import xarray as xr from py_wake.site.distance import StraightDistance import numpy as np from py_wake.utils.grid_interpolator import GridInterpolator, EqDistRegGrid2DInterpolator from py_wake.site._site import Site from py_wake.utils import weibull class XRSite(Site): use_WS_bins = False def __init__(self, ds, initial_position=None, interp_method='linear', shear=None, distance=StraightDistance(), default_ws=np.arange(3, 26), bounds='check'): assert interp_method in [ 'linear', 'nearest'], 'interp_method "%s" not implemented. Must be "linear" or "nearest"' % interp_method assert bounds in ['check', 'limit', 'ignore'], 'bounds must be "check", "limit" or "ignore"' self.interp_method = interp_method self.shear = shear self.bounds = bounds Site.__init__(self, distance) self.default_ws = default_ws if 'ws' not in ds.dims: ds.update({'ws': self.default_ws}) else: self.default_ws = ds.ws if 'wd' in ds and len(np.atleast_1d(ds.wd)) > 1: wd = ds.coords['wd'] sector_widths = np.diff(wd) assert np.allclose(sector_widths, sector_widths[0]), \ "all sectors must have same width" sector_width = sector_widths[0] else: sector_width = 360 if 'P' not in ds: assert 'Weibull_A' in ds and 'Weibull_k' in ds and 'Sector_frequency' in ds ds.attrs['sector_width'] = sector_width if initial_position is not None: ds.attrs['initial_position'] = initial_position # add 360 deg to all wd dependent datavalues if 'wd' in ds and ds.wd[-1] != 360 and 360 - ds.wd[-1] == sector_width: ds = xr.concat([ds, ds.sel(wd=0)], 'wd', data_vars='minimal') ds.update({'wd': np.r_[ds.wd[:-1], 360]}) if 'Elevation' in ds: self.elevation_interpolator = EqDistRegGrid2DInterpolator(ds.x.values, ds.y.values, ds.Elevation.values) self.ds = ds @property def initial_position(self): return self.ds.initial_position @initial_position.setter def initial_position(self, initial_position): self.ds.attrs['initial_position'] = initial_position def save(self, filename): self.ds.to_netcdf(filename) @staticmethod def load(filename, interp_method='nearest', shear=None, distance=StraightDistance()): ds = xr.load_dataset(filename) return XRSite(ds, interp_method=interp_method, shear=shear, distance=distance) @staticmethod def from_flow_box(flowBox, interp_method='linear', distance=StraightDistance()): ds = flowBox.drop_vars(['WS', 'TI']).rename_vars(WS_eff='WS', TI_eff='TI').squeeze() ds = ds.transpose(*[n for n in ['x', 'y', 'h', 'wd', 'ws'] if n in ds.dims]) site = XRSite(ds, interp_method=interp_method, distance=distance) # Correct P from propability pr. deg to sector probability as expected by XRSite site.ds['P'] = site.ds.P * site.ds.sector_width return site def elevation(self, x_i, y_i): if hasattr(self, "elevation_interpolator"): return self.elevation_interpolator(x_i, y_i, mode='valid') else: return x_i * 0 def interp(self, var, coords): # Interpolate via EqDistRegGridInterpolator (equidistance regular grid interpolator) which is much faster # than xarray.interp. # This function is comprehensive because var can contain any combinations of coordinates (i or (xy,h)) and wd,ws def sel(data, data_dims, indices, dim_name): i = data_dims.index(dim_name) ix = tuple([(slice(None), indices)[dim == i] for dim in range(data.ndim)]) return data[ix] ip_dims = [n for n in ['i', 'x', 'y', 'h', 'wd', 'ws'] if n in var.dims] # interpolation dimensions data = var.data data_dims = var.dims def pre_sel(data, name): # If only a single value is needed on the <name>-dimension, the data is squeezed to contain this value only # Otherwise the indices of the needed values are returned if name not in var.dims: return data, None c, v = coords[name].data, var[name].data indices = None if ip_dims and ip_dims[-1] == name and len(set(c) - set(np.atleast_1d(v))) == 0: # all coordinates in var, no need to interpolate ip_dims.remove(name) indices = np.searchsorted(v, c) if len(np.unique(indices)) == 1: # only one index, select before interpolation data = sel(data, data_dims, slice(indices[0], indices[0] + 1), name) indices = [0] else: indices = indices return data, indices # pre select, i.e. reduce input data size in case only one ws or wd is needed data, k_indices = pre_sel(data, 'ws') data, l_indices = pre_sel(data, 'wd') if 'i' in ip_dims: if 'i' in coords and len(var.i) != len(coords['i']): raise ValueError( "Number of points, i(=%d), in site data variable, %s, must match number of requested points(=%d)" % (len(var.i), var.name, len(coords['i']))) # requesting all points(wt positions) in site # ip_dims.remove('i') # ip_data_dims = ['i'] if len(ip_dims) > 0: grid_interp = GridInterpolator([var.coords[k].data for k in ip_dims], data, method=self.interp_method, bounds=self.bounds) # get dimension of interpolation coordinates I = (1, len(coords.get('x', coords.get('y', coords.get('h', coords.get('i', [None]))))))[ any([n in data_dims for n in 'xyhi'])] L, K = [(1, len(coords.get(n, [None])))[indices is None and n in data_dims] for n, indices in [('wd', l_indices), ('ws', k_indices)]] # gather interpolation coordinates xp with len #xyh x #wd x #ws xp = [coords[n].data.repeat(L * K) for n in 'xyhi' if n in ip_dims] ip_data_dims = [n for n, l in [('i', ['x', 'y', 'h', 'i']), ('wd', ['wd']), ('ws', ['ws'])] if any([l_ in ip_dims for l_ in l])] shape = [l for d, l in [('i', I), ('wd', L), ('ws', K)] if d in ip_data_dims] if 'wd' in ip_dims: xp.append(np.tile(coords['wd'].data.repeat(K), I)) elif 'wd' in data_dims: shape.append(data.shape[data_dims.index('wd')]) if 'ws' in ip_dims: xp.append(np.tile(coords['ws'].data, I * L)) elif 'ws' in data_dims: shape.append(data.shape[data_dims.index('ws')]) ip_data = grid_interp(np.array(xp).T) ip_data = ip_data.reshape(shape) else: ip_data = data ip_data_dims = [] # if 'i' in var.dims: # ip_data_dims.insert(0, 'i') if l_indices is not None: ip_data_dims.append('wd') ip_data = sel(ip_data, ip_data_dims, l_indices, 'wd') if k_indices is not None: ip_data_dims.append('ws') ip_data = sel(ip_data, ip_data_dims, k_indices, 'ws') ds = coords.to_dataset() if ip_data_dims: ds[var.name] = (ip_data_dims, ip_data) else: ds[var.name] = ip_data return ds[var.name] def weibull_weight(self, localWind, A, k): P = weibull.cdf(localWind.ws_upper, A=A, k=k) - weibull.cdf(localWind.ws_lower, A=A, k=k) P.attrs['Description'] = "Probability of wind flow case (i.e. wind direction and wind speed)" return P def _local_wind(self, localWind, ws_bins=None): """ Returns ------- LocalWind object containing: WD : array_like local free flow wind directions WS : array_like local free flow wind speeds TI : array_like local free flow turbulence intensity P : array_like Probability/weight """ lw = localWind def get(n, default=None): if n in self.ds: return self.interp(self.ds[n], lw.coords) else: return default WS, WD, TI, TI_std = [get(n, d) for n, d in [('WS', lw.ws), ('WD', lw.wd), ('TI', None), ('TI_std', None)]] if 'Speedup' in self.ds: WS = self.interp(self.ds.Speedup, lw.coords) * WS if self.shear: assert 'h' in lw and np.all(lw.h.data != None), "Height must be specified and not None" # nopep8 h = np.unique(lw.h) if len(h) > 1: h = lw.h else: h = h[0] WS = self.shear(WS, lw.wd, h) if 'Turning' in self.ds: WD = (self.interp(self.ds.Turning, lw.coords) + WD) % 360 lw.set_W(WS, WD, TI, ws_bins, self.use_WS_bins) lw.set_data_array(TI_std, 'TI_std', 'Standard deviation of turbulence intensity') if 'P' in self.ds: if ('ws' in self.ds.P.dims and 'ws' in lw.coords): d_ws = self.ds.P.ws.values c_ws = lw.coords['ws'].values i = np.searchsorted(d_ws, c_ws[0]) if (np.any([ws not in d_ws for ws in c_ws]) or # check all coordinate ws in data ws len(d_ws[i:i + len(c_ws)]) != len(c_ws) or # check subset has same length np.any(d_ws[i:i + len(c_ws)] != c_ws)): # check subset are equal raise ValueError("Cannot interpolate ws-dependent P to other range of ws") lw['P'] = self.interp(self.ds.P, lw.coords) / \ self.ds.sector_width * lw.wd_bin_size else: sf = self.interp(self.ds.Sector_frequency, lw.coords) p_wd = sf / self.ds.sector_width * lw.wd_bin_size A, k = self.interp(self.ds.Weibull_A, lw.coords), self.interp(self.ds.Weibull_k, lw.coords) lw['Weibull_A'] = A lw['Weibull_k'] = k lw['Sector_frequency'] = p_wd lw['P'] = p_wd * self.weibull_weight(lw, A, k) return lw class UniformSite(XRSite): """Site with uniform (same wind over all, i.e. flat uniform terrain) and constant wind speed probability of 1. Only for one fixed wind speed """ def __init__(self, p_wd, ti, ws=12, interp_method='nearest', shear=None, initial_position=None): ds = xr.Dataset( data_vars={'P': ('wd', p_wd), 'TI': ti}, coords={'wd': np.linspace(0, 360, len(p_wd), endpoint=False)}) XRSite.__init__(self, ds, interp_method=interp_method, shear=shear, initial_position=initial_position, default_ws=np.atleast_1d(ws)) class UniformWeibullSite(XRSite): """Site with uniform (same wind over all, i.e. flat uniform terrain) and weibull distributed wind speed """ def __init__(self, p_wd, a, k, ti, interp_method='nearest', shear=None): """Initialize UniformWeibullSite Parameters ---------- p_wd : array_like Probability of wind direction sectors a : array_like Weilbull scaling parameter of wind direction sectors k : array_like Weibull shape parameter ti : float or array_like Turbulence intensity interp_method : 'nearest', 'linear' p_wd, a, k, ti and alpha are interpolated to 1 deg sectors using this method shear : Shear object Shear object, e.g. NoShear(), PowerShear(h_ref, alpha) Notes ------ The wind direction sectors will be: [0 +/- w/2, w +/- w/2, ...] where w is 360 / len(p_wd) """ ds = xr.Dataset( data_vars={'Sector_frequency': ('wd', p_wd), 'Weibull_A': ('wd', a), 'Weibull_k': ('wd', k), 'TI': ti}, coords={'wd': np.linspace(0, 360, len(p_wd), endpoint=False)}) XRSite.__init__(self, ds, interp_method=interp_method, shear=shear)