import os import struct from numpy import newaxis as na import numpy as np from py_wake.deficit_models.deficit_model import DeficitModel from py_wake.superposition_models import LinearSum from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative from py_wake.rotor_avg_models.rotor_avg_model import RotorCenter from py_wake.tests.test_files import tfp from py_wake.utils.grid_interpolator import GridInterpolator class FugaDeficit(DeficitModel): ams = 5 invL = 0 args4deficit = ['WS_ilk', 'WS_eff_ilk', 'dw_ijlk', 'hcw_ijlk', 'dh_ijl', 'h_il', 'ct_ilk', 'D_src_il'] def __init__(self, LUT_path=tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/'): self.lut_interpolator = LUTInterpolator(*self.load(LUT_path)) def load(self, path): with open(path + 'CaseData.bin', 'rb') as fid: case_name = struct.unpack('127s', fid.read(127))[0] # @UnusedVariable r = struct.unpack('d', fid.read(8))[0] # @UnusedVariable zhub = struct.unpack('d', fid.read(8))[0] lo_level = struct.unpack('I', fid.read(4))[0] # @UnusedVariable hi_level = struct.unpack('I', fid.read(4))[0] # @UnusedVariable z0 = struct.unpack('d', fid.read(8))[0] zi = struct.unpack('d', fid.read(8))[0] # @UnusedVariable ds = struct.unpack('d', fid.read(8))[0] closure = struct.unpack('I', fid.read(4))[0] # @UnusedVariable if os.path.getsize(path + 'CaseData.bin') == 187: zeta0 = struct.unpack('d', fid.read(8))[0] else: # with open(path + 'CaseData.bin', 'rb') as fid2: # info = fid2.read(127).decode() # zeta0 = float(info[info.index('Zeta0'):].replace("Zeta0=", "")) zeta0 = float(path[path.index('Zeta0'):].replace("Zeta0=", "").replace("/", "")) def psim(zeta): return self.ams * zeta if not zeta0 >= 0: # pragma: no cover # See Colonel.u2b.psim raise NotImplementedError factor = 1 / (1 - (psim(zhub * self.invL) - psim(zeta0)) / np.log(zhub / z0)) f = [f for f in os.listdir(path) if f.endswith("input.par") or f.endswith('inputfile.par')][0] # z0_zi_zeta0 = os.path.split(os.path.dirname(path))[1] # z0, zi, zeta0 = re.match('Z0=(\d+.\d+)Zi=(\d+)Zeta0=(\d+.\d+E\+\d+)', z0_zi_zeta0).groups() with open(path + f) as fid: lines = fid.readlines() prefix = lines[0].strip() nxW, nyW = map(int, lines[2:4]) dx, dy, sigmax, sigmay = map(float, lines[4:8]) # @UnusedVariable lo_level, hi_level = map(int, lines[11:13]) dsAll = ds zlevels = np.arange(lo_level, hi_level + 1) mdu = [np.fromfile(path + prefix + '%04dUL.dat' % j, np.dtype('<f'), -1) for j in zlevels] du = -np.array(mdu, dtype=np.float32).reshape((len(mdu), nyW // 2, nxW)) * factor z0 = z0 x0 = nxW // 4 dx = dx x = np.arange(-x0, nxW * 3 / 4) * dx y = np.arange(nyW // 2) * dy dy = dy if lo_level == hi_level == 9999: z = [zhub] else: z = z0 * np.exp(zlevels * dsAll) # self.grid_interplator = GridInterpolator([self.z, self.y, self.x], self.du) return x, y, z, du def interpolate(self, x, y, z): # self.grid_interplator(np.array([zyx.flatten() for zyx in [z, y, x]]).T, check_bounds=False).reshape(x.shape) return self.lut_interpolator((x, y, z)) def _calc_layout_terms(self, dw_ijlk, hcw_ijlk, h_il, dh_ijl, D_src_il, **_): self.mdu_ijlk = self.interpolate(dw_ijlk, np.abs(hcw_ijlk), (h_il[:, na] + dh_ijl)[:, :, :, na]) * \ ~((dw_ijlk == 0) & (hcw_ijlk <= D_src_il[:, na, :, na]) # avoid wake on itself ) def calc_deficit(self, WS_ilk, WS_eff_ilk, dw_ijlk, hcw_ijlk, dh_ijl, h_il, ct_ilk, D_src_il, **kwargs): if not self.deficit_initalized: self._calc_layout_terms(dw_ijlk, hcw_ijlk, h_il, dh_ijl, D_src_il, **kwargs) return self.mdu_ijlk * (ct_ilk * WS_eff_ilk**2 / WS_ilk)[:, na] def wake_radius(self, D_src_il, **_): # Set at twice the source radius for now return D_src_il[:, na, :, na] class LUTInterpolator(object): # Faster than scipy.interpolate.interpolate.RegularGridInterpolator def __init__(self, x, y, z, V): self.x = x self.y = y self.z = z self.V = V self.nx = nx = len(x) self.ny = ny = len(y) self.nz = nz = len(z) assert V.shape == (nz, ny, nx) self.dx, self.dy = [xy[1] - xy[0] for xy in [x, y]] self.x0 = x[0] self.y0 = y[0] Ve = np.concatenate((V, V[-1:]), 0) Ve = np.concatenate((Ve, Ve[:, -1:]), 1) Ve = np.concatenate((Ve, Ve[:, :, -1:]), 2) self.V000 = np.array([V, Ve[:-1, :-1, 1:], Ve[:-1, 1:, :-1], Ve[:-1, 1:, 1:], Ve[1:, :-1, :-1], Ve[1:, :-1, 1:], Ve[1:, 1:, :-1], Ve[1:, 1:, 1:]]).reshape((8, nz * ny * nx)) def __call__(self, xyz): xp, yp, zp = xyz xp = np.maximum(np.minimum(xp, self.x[-1]), self.x[0]) yp = np.maximum(np.minimum(yp, self.y[-1]), self.y[0]) zp = np.maximum(np.minimum(zp, self.z[-1]), self.z[0]) def i0f(_i): _i0 = np.asarray(_i).astype(np.int) _if = _i - _i0 return _i0, _if xi0, xif = i0f((xp - self.x0) / self.dx) yi0, yif = i0f((yp - self.y0) / self.dy) zi0, zif = i0f(np.interp(zp, self.z, np.arange(self.nz))) nx, ny = self.nx, self.ny v000, v001, v010, v011, v100, v101, v110, v111 = self.V000[:, zi0 * nx * ny + yi0 * nx + xi0] v_00 = v000 + (v100 - v000) * zif v_01 = v001 + (v101 - v001) * zif v_10 = v010 + (v110 - v010) * zif v_11 = v011 + (v111 - v011) * zif v__0 = v_00 + (v_10 - v_00) * yif v__1 = v_01 + (v_11 - v_01) * yif return (v__0 + (v__1 - v__0) * xif) # # Slightly slower # xif1, yif1, zif1 = 1 - xif, 1 - yif, 1 - zif # w = np.array([xif1 * yif1 * zif1, # xif * yif1 * zif1, # xif1 * yif * zif1, # xif * yif * zif1, # xif1 * yif1 * zif, # xif * yif1 * zif, # xif1 * yif * zif, # xif * yif * zif]) # # return np.sum(w * self.V01[:, zi0, yi0, xi0], 0) class Fuga(PropagateDownwind): def __init__(self, LUT_path, site, windTurbines, rotorAvgModel=RotorCenter(), deflectionModel=None, turbulenceModel=None): """ Parameters ---------- LUT_path : str path to look up tables site : Site Site object windTurbines : WindTurbines WindTurbines object representing the wake generating wind turbines rotorAvgModel : RotorAvgModel Model defining one or more points at the down stream rotors to calculate the rotor average wind speeds from.\n Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only deflectionModel : DeflectionModel Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc. turbulenceModel : TurbulenceModel Model describing the amount of added turbulence in the wake """ PropagateDownwind.__init__(self, site, windTurbines, wake_deficitModel=FugaDeficit(LUT_path), rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(), deflectionModel=deflectionModel, turbulenceModel=turbulenceModel) class FugaBlockage(All2AllIterative): def __init__(self, LUT_path, site, windTurbines, rotorAvgModel=RotorCenter(), deflectionModel=None, turbulenceModel=None, convergence_tolerance=1e-6): """ Parameters ---------- LUT_path : str path to look up tables site : Site Site object windTurbines : WindTurbines WindTurbines object representing the wake generating wind turbines rotorAvgModel : RotorAvgModel Model defining one or more points at the down stream rotors to calculate the rotor average wind speeds from.\n Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only deflectionModel : DeflectionModel Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc. turbulenceModel : TurbulenceModel Model describing the amount of added turbulence in the wake """ fuga_deficit = FugaDeficit(LUT_path) All2AllIterative.__init__(self, site, windTurbines, wake_deficitModel=fuga_deficit, rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(), blockage_deficitModel=fuga_deficit, turbulenceModel=turbulenceModel, convergence_tolerance=convergence_tolerance) def main(): if __name__ == '__main__': from py_wake.examples.data.iea37._iea37 import IEA37Site from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines import matplotlib.pyplot as plt # setup site, turbines and wind farm model site = IEA37Site(16) x, y = site.initial_position.T windTurbines = IEA37_WindTurbines() path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/' for wf_model in [Fuga(path, site, windTurbines), FugaBlockage(path, site, windTurbines)]: plt.figure() print(wf_model) # run wind farm simulation sim_res = wf_model(x, y) # calculate AEP aep = sim_res.aep().sum() # plot wake map flow_map = sim_res.flow_map(wd=30, ws=9.8) flow_map.plot_wake_map() flow_map.plot_windturbines() plt.title('AEP: %.2f GWh' % aep) plt.show() plt.show() main()