from py_wake.flow_map import HorizontalGrid, YZGrid, Points, XYGrid from py_wake.tests import npt import matplotlib.pyplot as plt from py_wake import np from py_wake.examples.data.ParqueFicticio._parque_ficticio import ParqueFicticioSite from py_wake.site.distance import StraightDistance from py_wake.examples.data.iea37 import IEA37Site, IEA37_WindTurbines import pytest from py_wake.deflection_models.jimenez import JimenezWakeDeflection from py_wake.wind_turbines._wind_turbines import WindTurbines, WindTurbine from py_wake.examples.data import wtg_path, hornsrev1 from py_wake.utils.profiling import timeit from py_wake.wind_turbines.power_ct_functions import PowerCtTabular from py_wake.examples.data.hornsrev1 import V80 from py_wake.literature.iea37_case_study1 import IEA37CaseStudy1 from py_wake.deficit_models.gaussian import IEA37SimpleBastankhahGaussianDeficit from py_wake.wind_farm_models.engineering_models import PropagateDownwind from py_wake.superposition_models import SquaredSum @pytest.fixture(autouse=True) def close_plots(): yield try: plt.close('all') except Exception: pass def test_power_xylk(): wind_farm_model = IEA37CaseStudy1(16) x, y = wind_farm_model.site.initial_position.T simulation_result = wind_farm_model(x, y) fm = simulation_result.flow_map(grid=HorizontalGrid(resolution=3)) npt.assert_array_almost_equal(fm.power_xylk(with_wake_loss=False)[:, :, 0, 0] * 1e-6, 3.35) fm = simulation_result.flow_map(grid=Points( [-1820., 0., 1820., -1820., 0., 1820., -1820., 0., 1820.], [-1730.9229, -1730.9229, -1730.9229, 0., 0., 0., 1730.9229, 1730.9229, 1730.9229], [110., 110., 110., 110., 110., 110., 110., 110., 110.])) npt.assert_array_almost_equal(fm.power_xylk(with_wake_loss=False)[:, 0, 0] * 1e-6, 3.35) def test_power_xylk_wt_args(): site = IEA37Site(16) x, y = site.initial_position.T windTurbines = WindTurbines.from_WAsP_wtg(wtg_path + "Vestas V112-3.0 MW.wtg", default_mode=None) wind_farm_model = PropagateDownwind(site, windTurbines, wake_deficitModel=IEA37SimpleBastankhahGaussianDeficit(), superpositionModel=SquaredSum()) simulation_result = wind_farm_model(x, y, wd=[0, 270], ws=[6, 8, 10], mode=0) fm = simulation_result.flow_map(XYGrid(resolution=3)) npt.assert_array_almost_equal(fm.power_xylk(mode=1).sum(['wd', 'ws']).isel(h=0), [[7030000., 6378864., 7029974.], [7030000., 6144918., 4902029.], [7030000., 7030000., 7029974.]], 0) npt.assert_array_almost_equal(fm.power_xylk(mode=8).sum(['wd', 'ws']).isel(h=0), [[8330000., 7577910., 8329970.], [8330000., 7304188., 5837139.], [8330000., 8330000., 8329970.]], 0) # print(np.round(fm.power_xylk(mode=8).sum(['wd', 'ws']).squeeze())) npt.assert_array_almost_equal(fm.aep_xylk(mode=1).sum(['x', 'y']).isel(h=0), [[10., 24., 47.], [75., 191., 375.]], 0) npt.assert_array_almost_equal(fm.aep_xy(mode=1).isel(h=0), [[88., 86., 88.], [88., 68., 40.], [88., 88., 88.]], 0) def test_YZGrid_perpendicular(): wind_farm_model = IEA37CaseStudy1(16) x, y = wind_farm_model.site.initial_position.T m = x < -1000 simulation_result = wind_farm_model(x[m], y[m], wd=270) fm = simulation_result.flow_map(grid=YZGrid(-1000, z=110, resolution=20)) if 0: simulation_result.flow_map(grid=YZGrid(-1000)).plot_wake_map() plt.plot(fm.X[0], fm.Y[0], '.') print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).data.tolist()) plt.plot(fm.X[0], fm.WS_eff_xylk[:, 0, 0, 0] * 100, label='ws*100') plt.legend() plt.show() npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [9.8, 9.8, 8.42, 5.24, 9.74, 9.8, 9.8, 9.8, 9.76, 7.61, 7.61, 9.76, 9.8, 9.8, 9.8, 9.74, 5.24, 8.42, 9.8, 9.8], 2) def test_YZGrid_parallel(): wind_farm_model = IEA37CaseStudy1(16) x, y = wind_farm_model.site.initial_position.T m = x < -1000 simulation_result = wind_farm_model(x[m], y[m], wd=0) fm = simulation_result.flow_map(grid=YZGrid(-1000, z=110, resolution=20)) if 0: simulation_result.flow_map(grid=YZGrid(-1000)).plot_wake_map() plt.plot(fm.X[0], fm.Y[0], '.') print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).data.tolist()) plt.plot(fm.X[0], fm.WS_eff_xylk[:, 0, 0, 0] * 100, label='ws*100') plt.legend() plt.show() npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [7.32, 7.02, 6.63, 8.86, 8.79, 8.71, 8.63, 8.53, 8.42, 8.3, 8.16, 7.99, 7.81, 7.59, 7.33, 7.0, 6.52, 9.8, 9.8, 9.8], 2) def test_YZGrid_plot_wake_map_perpendicular(): wfm = IEA37CaseStudy1(16) x, y = wfm.site.initial_position.T sim_res = wfm(x, y) sim_res.flow_map(grid=YZGrid(x=-100, y=None, resolution=100, extend=.1), wd=270, ws=None).plot_wake_map() if 0: plt.show() plt.close('all') def test_YZGrid_variables(): wfm = IEA37CaseStudy1(16) x, y = [0], [0] sim_res = wfm(x, y) fm = sim_res.flow_map(grid=YZGrid(x=100, y=None, resolution=100, extend=.1), wd=270, ws=None) fm.WS_eff.plot() plt.plot(fm.y[::10], fm.y[::10] * 0 + 110, '.') if 0: print(np.round(fm.WS_eff.interp(h=110)[::10].squeeze().values, 4)) plt.show() plt.close('all') npt.assert_array_almost_equal(fm.WS_eff.interp(h=110)[::10].squeeze(), [9.1461, 8.4157, 7.3239, 6.058, 5.022, 4.6455, 5.1019, 6.182, 7.446, 8.506], 4) def test_YZGrid_plot_wake_map_parallel(): wfm = IEA37CaseStudy1(16) x, y = wfm.site.initial_position.T sim_res = wfm(x, y) sim_res.flow_map(wd=0, ws=None).plot_wake_map() plt.axvline(-450, ls='--') plt.figure() sim_res.flow_map(grid=YZGrid(x=-450, y=None, resolution=100, extend=.1), wd=0, ws=None).plot_wake_map() if 0: plt.show() plt.close('all') def test_YZGrid_terrain_perpendicular(): site = ParqueFicticioSite(distance=StraightDistance()) x, y = site.initial_position.T windTurbines = IEA37_WindTurbines() wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=IEA37SimpleBastankhahGaussianDeficit(), superpositionModel=SquaredSum()) simulation_result = wfm(x, y, wd=270, ws=10) x = x.max() + 10 fm = simulation_result.flow_map(grid=YZGrid(x, z=110, resolution=20, extend=0)) y = fm.X[0] x = np.zeros_like(y) + x z = site.elevation(x, y) simulation_result.flow_map(XYGrid(extend=.005)).plot_wake_map() plt.plot(x, y, '.') plt.figure() simulation_result.flow_map(grid=YZGrid(fm.x.item(), y=fm.y, z=np.arange(30, 210, 10))).plot_wake_map() plt.plot(y, z + 110, '.') plt.plot(y, fm.WS_eff_xylk[:, 0, 0, 0] * 100, label="ws*100") plt.legend() if 0: print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).values.tolist()) plt.show() plt.close('all') npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [5.39, 8.48, 8.42, 6.42, 5.55, 11.02, 4.99, 11.47, 5.32, 10.22, 13.39, 8.79, 8.51, 12.4, 5.47, 10.78, 10.12, 6.54, 10.91, 7.18], 2) def test_YZGrid_terrain_parallel(): site = ParqueFicticioSite(distance=StraightDistance()) x, y = site.initial_position.T windTurbines = IEA37_WindTurbines() wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=IEA37SimpleBastankhahGaussianDeficit(), superpositionModel=SquaredSum()) simulation_result = wfm(x, y, wd=0, ws=10) x = 264000 fm = simulation_result.flow_map(grid=YZGrid(x, z=110, resolution=20, extend=0)) if 0: y = fm.X[0] x = np.zeros_like(y) + x z = site.elevation(x, y) simulation_result.flow_map(XYGrid(extend=0.005)).plot_wake_map() plt.plot(x, y, '.') plt.figure() simulation_result.flow_map(grid=YZGrid(fm.x.item(), fm.y, z=np.arange(30, 210, 10))).plot_wake_map() plt.plot(y, z + 110, '.') plt.plot(y, fm.WS_eff_xylk[:, 0, 0, 0] * 100, label="ws*100") plt.legend() print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).values.tolist()) plt.show() plt.close('all') npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [4.55, 3.89, 3.15, 2.31, 4.41, 4.3, 7.41, 7.2, 7.03, 7.23, 7.32, 6.77, 6.83, 5.58, 11.01, 11.51, 11.93, 12.17, 11.03, 9.89], 2) def test_Points(): wfm = IEA37CaseStudy1(16) x, y = wfm.site.initial_position.T sim_res = wfm(x, y) flow_map = sim_res.flow_map(Points(x, y, x * 0 + wfm.windTurbines.hub_height()), wd=0, ws=None) if 0: flow_map.WS_eff.plot() plt.show() plt.close('all') def test_not_implemented_plane(): wfm = IEA37CaseStudy1(16) x, y = wfm.site.initial_position.T sim_res = wfm(x, y) grid = YZGrid(x=-100, y=None, resolution=100, extend=.1) grid = grid(x, y, wfm.windTurbines.hub_height(x * 0), wfm.windTurbines.hub_height(x * 0)) with pytest.raises(NotImplementedError): sim_res.flow_map(grid=grid, wd=270, ws=None).plot_wake_map() def test_FlowBox(): wfm = IEA37CaseStudy1(16) x, y = wfm.site.initial_position.T sim_res = wfm(x, y) sim_res.flow_box(x=np.arange(0, 100, 10), y=np.arange(0, 100, 10), h=np.arange(0, 100, 10)) def test_min_ws_eff_line(): wfm = IEA37CaseStudy1(16, deflectionModel=JimenezWakeDeflection()) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T yaw_ilk = np.reshape([-30, 30, 0], (3, 1, 1)) plt.figure(figsize=(14, 3)) fm = wfm(x, y, yaw=yaw_ilk, wd=270, ws=10).flow_map( XYGrid(x=np.arange(-100, 2000, 10), y=np.arange(-500, 500, 10))) min_ws_line = fm.min_WS_eff() if 0: fm.plot_wake_map() min_ws_line.plot() print(np.round(min_ws_line[::10], 2)) plt.show() plt.close('all') npt.assert_array_almost_equal(min_ws_line[::10], [np.nan, np.nan, 11.6, 21.64, 30.42, 38.17, 45.09, 51.27, -8.65, -18.66, -27.51, -35.37, -42.38, -48.58, -1.09, -1.34, -1.59, -1.83, -2.07, -2.31, -2.56], 2) def test_plot_windturbines_with_wd_ws_dependent_yaw(): wfm = IEA37CaseStudy1(16, deflectionModel=JimenezWakeDeflection()) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T yaw_ilk = np.broadcast_to(np.reshape([-30, 30, 0], (3, 1, 1)), (3, 4, 2)) plt.figure(figsize=(14, 3)) fm = wfm(x, y, yaw=yaw_ilk, wd=[0, 90, 180, 270], ws=[9, 10]).flow_map( XYGrid(x=np.arange(-100, 2000, 10), y=np.arange(-500, 500, 10))) fm.plot_windturbines() if 0: plt.show() plt.close('all') def flow_map_j_wd_chunks(): # demonstrate that wd chunkification is more efficient than j chunkification wfm = IEA37CaseStudy1(16, deflectionModel=JimenezWakeDeflection()) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T yaw_ilk = np.reshape([-30, 30, 0], (3, 1, 1)) sim_res = wfm(x, y, yaw=yaw_ilk, wd=np.arange(320), ws=10) t_all = timeit(sim_res.flow_map, verbose=1)(XYGrid(x=np.linspace(-100, 2000, 64), y=np.linspace(-500, 500, 100))) t_j = timeit(sim_res.flow_map, verbose=1)(XYGrid(x=np.linspace(-100, 2000, 2), y=np.linspace(-500, 500, 100))) t_wd = timeit(sim_res.flow_map, verbose=1)(XYGrid(x=np.linspace(-100, 2000, 64), y=np.linspace(-500, 500, 100)), wd=np.arange(10)) print(np.mean(t_all[1]) / np.mean(t_j[1])) print(np.mean(t_all[1]) / np.mean(t_wd[1])) def test_aep_map(): wfm = IEA37CaseStudy1(16) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T sim_res = wfm(x, y) grid = XYGrid(x=np.linspace(-100, 2000, 50), y=np.linspace(-500, 500, 25)) aep_map = sim_res.aep_map(grid, normalize_probabilities=True) fm = sim_res.flow_map(grid) npt.assert_array_almost_equal(fm.aep_xy(normalize_probabilities=True).sel(h=110), aep_map) grid = Points(x=np.linspace(-100, 2000, 50), y=np.full(50, -500), h=np.full(50, wfm.windTurbines.hub_height())) aep_line = sim_res.aep_map(grid, normalize_probabilities=True) npt.assert_array_almost_equal(aep_map[0], aep_line) def test_aep_map_type(): site = IEA37Site(16) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T v80 = V80() v120 = WindTurbine('V80_low_induc', 80, 70, powerCtFunction=PowerCtTabular( hornsrev1.power_curve[:, 0], hornsrev1.power_curve[:, 1] * 1.5, 'w', hornsrev1.ct_curve[:, 1])) windTurbines = WindTurbines.from_WindTurbine_lst([v80, v120]) wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=IEA37SimpleBastankhahGaussianDeficit(), superpositionModel=SquaredSum()) sim_res = wfm(x, y) grid = XYGrid(x=np.linspace(-100, 2000, 50), y=np.linspace(-500, 500, 25)) aep_map0 = sim_res.aep_map(grid, normalize_probabilities=True) aep_map1 = sim_res.aep_map(grid, type=1, normalize_probabilities=True) npt.assert_array_almost_equal(aep_map0 * 1.5, aep_map1) def test_aep_map_parallel(): wfm = IEA37CaseStudy1(16) x, y = [0, 600, 1200], [0, 0, 0] # site.initial_position[:2].T sim_res = wfm(x, y) grid = XYGrid(x=np.linspace(-100, 2000, 50), y=np.linspace(-500, 500, 25)) aep_map = sim_res.aep_map(grid, normalize_probabilities=True, n_cpu=2) fm = sim_res.flow_map(grid) npt.assert_array_almost_equal(fm.aep_xy(normalize_probabilities=True).sel(h=110), aep_map) fm = sim_res.flow_map(grid, wd=[0]) aep_map = sim_res.aep_map(grid, normalize_probabilities=True, wd=[0], n_cpu=2) npt.assert_array_almost_equal(fm.aep_xy(normalize_probabilities=True).sel(h=110), aep_map) def test_aep_map_smartstart_griddedsite_terrainfollowingdistance(): site = ParqueFicticioSite() x, y = site.initial_position[:3].T windTurbines = IEA37_WindTurbines() wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=IEA37SimpleBastankhahGaussianDeficit(), superpositionModel=SquaredSum()) for i in range(3): sim_res = wfm(x[:i], y[:i], wd=[0, 1]) grid = XYGrid(x=site.ds.x, y=site.ds.y) sim_res.aep_map(grid, normalize_probabilities=True) def test_wd_dependent_flow_map(): wfm = IEA37CaseStudy1(16) sim_res = wfm(x=[0], y=[0], wd=[0, 90, 180]) for wd in [[0], [0, 90], None]: fm = sim_res.flow_map(wd=wd) fm.plot_wake_map() if 0: plt.show() plt.close('all') def test_ws_dependent_flow_map(): wfm = IEA37CaseStudy1(16) sim_res = wfm(x=[0], y=[0], ws=[8, 9, 10], wd=270) for ws in [[8], [8, 9], None]: fm = sim_res.flow_map(ws=ws) fm.plot_wake_map() if 0: plt.show() plt.close('all') def test_time_dependent_flow_map(): wfm = IEA37CaseStudy1(16) sim_res = wfm(x=[0], y=[0], wd=[0, 90, 180], ws=[8, 9, 10], time=True) for t in [[0], [0, 1], None]: fm = sim_res.flow_map(time=t) fm.plot_wake_map() if 0: plt.show() plt.close('all') def test_i_dependent_flow_map(): wfm = IEA37CaseStudy1(16) sim_res = wfm(x=[0], y=[0], wd=[0, 90, 180]) X, Y = np.meshgrid(np.linspace(-2000, 2000, 50), np.linspace(-2000, 2000, 50)) fm = sim_res.flow_map(Points(x=X.flatten(), y=Y.flatten(), h=X.flatten() * 0 + 110)) with pytest.raises(NotImplementedError, match="Plot not supported for FlowMaps based on Points. Use XYGrid, YZGrid or XZGrid instead"): fm.plot_wake_map()