from abc import abstractmethod, ABC from py_wake.site._site import Site, LocalWind from py_wake.wind_turbines import WindTurbines import numpy as np from py_wake.flow_map import FlowMap, HorizontalGrid class WindFarmModel(ABC): """Base class for RANS and engineering flow models""" def __init__(self, site, windTurbines): assert isinstance(site, Site) assert isinstance(windTurbines, WindTurbines) self.site = site self.windTurbines = windTurbines def __call__(self, x, y, h=None, type=0, wd=None, ws=None, yaw_ilk=None): """Run the wind farm simulation Parameters ---------- x : array_like Wind turbine x positions y : array_like Wind turbine y positions h : array_like, optional Wind turbine hub heights type : int or array_like, optional Wind turbine type, default is 0 wd : int or array_like Wind direction(s) ws : int, float or array_like Wind speed(s) Returns ------- SimulationResult """ assert len(x) == len(y) type, h, _ = self.windTurbines.get_defaults(len(x), type, h) wd, ws = self.site.get_defaults(wd, ws) if len(x) == 0: wd, ws = np.atleast_1d(wd), np.atleast_1d(ws) z = np.zeros((0, len(wd), len(ws))) localWind = LocalWind(z, z, z, z) return SimulationResult(self, localWind=localWind, x_i=x, y_i=y, h_i=h, type_i=type, yaw_ilk=yaw_ilk, wd=wd, ws=ws, WS_eff_ilk=z, TI_eff_ilk=z, power_ilk=z, ct_ilk=z) WS_eff_ilk, TI_eff_ilk, power_ilk, ct_ilk, localWind = self.calc_wt_interaction( x_i=x, y_i=y, h_i=h, type_i=type, yaw_ilk=yaw_ilk, wd=wd, ws=ws) return SimulationResult(self, localWind=localWind, x_i=x, y_i=y, h_i=h, type_i=type, yaw_ilk=yaw_ilk, wd=wd, ws=ws, WS_eff_ilk=WS_eff_ilk, TI_eff_ilk=TI_eff_ilk, power_ilk=power_ilk, ct_ilk=ct_ilk) @abstractmethod def calc_wt_interaction(self, x_i, y_i, h_i=None, type_i=None, yaw_ilk=None, wd=None, ws=None): """Calculate effective wind speed, turbulence intensity, power and thrust coefficient, and local site parameters Typical users should not call this function directly, but by calling the windFarmModel object (invokes the __call__() function above) which returns a nice SimulationResult object Parameters ---------- x_i : array_like X position of wind turbines y_i : array_like Y position of wind turbines h_i : array_like or None, optional Hub height of wind turbines\n If None, default, the standard hub height is used type_i : array_like or None, optional Wind turbine types\n If None, default, the first type is used (type=0) wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws Returns ------- WS_eff_ilk : array_like Effective wind speeds [m/s] TI_eff_ilk : array_like Turbulence intensities. Should be effective, but not implemented yet power_ilk : array_like Power productions [w] ct_ilk : array_like Thrust coefficients localWind : LocalWind Local free-flow wind """ class SimulationResult(): """Simulation result returned when calling a WindFarmModel object""" def __init__(self, windFarmModel, localWind, x_i, y_i, h_i, type_i, yaw_ilk, wd, ws, WS_eff_ilk, TI_eff_ilk, power_ilk, ct_ilk): self.windFarmModel = windFarmModel self.localWind = localWind self.x_i = x_i self.y_i = y_i self.h_i = h_i self.type_i = type_i self.yaw_ilk = yaw_ilk self.WS_eff_ilk = WS_eff_ilk self.TI_eff_ilk = TI_eff_ilk self.power_ilk = power_ilk self.ct_ilk = ct_ilk self.wd = wd self.ws = ws def aep_ilk(self, normalize_probabilities=False, with_wake_loss=True): """Anual Energy Production of all turbines (i), wind directions (l) and wind speeds (k) in in GWh Parameters ---------- normalize_propabilities : Optional bool, defaults to False In case only a subset of all wind speeds and/or wind directions is simulated, this parameter determines whether the returned AEP represents the energy produced in the fraction of a year where these flow cases occur or a whole year of only these cases. If for example, wd=[0], then - False means that the AEP only includes energy from the faction of year\n with northern wind (359.5-0.5deg), i.e. no power is produced the rest of the year. - True means that the AEP represents a whole year of northen wind. with_wake_loss : Optional bool, defaults to True If True, wake loss is included, i.e. power is calculated using local effective wind speed\n If False, wake loss is neglected, i.e. power is calculated using local free flow wind speed """ if normalize_probabilities: norm = self.localWind.P_ilk.sum((1, 2))[:, np.newaxis, np.newaxis] else: norm = 1 if with_wake_loss: return self.power_ilk * self.localWind.P_ilk / norm * 24 * 365 * 1e-9 else: power_ilk = self.windFarmModel.windTurbines.power(self.localWind.WS_ilk, self.type_i) return power_ilk * self.localWind.P_ilk / norm * 24 * 365 * 1e-9 def aep(self, normalize_probabilities=False, with_wake_loss=True): """Anual Energy Production (sum of all wind turbines, directions and speeds) in GWh. See aep_ilk """ return self.aep_ilk(normalize_probabilities, with_wake_loss).sum() def flow_map(self, grid=None, wd=None, ws=None): """Return a FlowMap object with WS_eff and TI_eff of all grid points Parameters ---------- grid : Grid or tuple(X, Y, x, y, h) Grid, e.g. HorizontalGrid or\n tuple(X, Y, x, y, h) where X, Y is the meshgrid for visualizing data\n and x, y, h are the flattened grid points See Also -------- pywake.wind_farm_models.flow_map.FlowMap """ if grid is None: grid = HorizontalGrid() if isinstance(grid, HorizontalGrid): plane = grid.plane grid = grid(x_i=self.x_i, y_i=self.y_i, h_i=self.h_i, d_i=self.windFarmModel.windTurbines.diameter(self.type_i)) else: plane = (None,) if wd is None: wd = self.wd else: assert np.all(np.isin(wd, self.wd)), "All wd=%s not in simulation result" % wd if ws is None: ws = self.ws else: assert np.all(np.isin(ws, self.ws)), "All ws=%s not in simulation result (ws=%s)" % (ws, self.ws) wd, ws = np.atleast_1d(wd), np.atleast_1d(ws) l_indices = np.argwhere(wd[:, None] == self.wd)[:, 1] k_indices = np.argwhere(ws[:, None] == self.ws)[:, 1] X, Y, x_j, y_j, h_j = grid lw_j, WS_eff_jlk, TI_eff_jlk = self.windFarmModel._flow_map( x_j, y_j, h_j, self.x_i, self.y_i, self.h_i, self.type_i, self.yaw_ilk, self.localWind.WD_ilk[:, l_indices][:, :, k_indices], self.localWind.WS_ilk[:, l_indices][:, :, k_indices], self.localWind.TI_ilk[:, l_indices][:, :, k_indices], self.WS_eff_ilk[:, l_indices][:, :, k_indices], self.TI_eff_ilk[:, l_indices][:, :, k_indices], self.ct_ilk[:, l_indices][:, :, k_indices], wd, ws) if self.yaw_ilk is not None: yaw_ilk = self.yaw_ilk[:, l_indices][:, :, k_indices] else: yaw_ilk = None return FlowMap(self, X, Y, lw_j, WS_eff_jlk, TI_eff_jlk, wd, ws, yaw_ilk=yaw_ilk, plane=plane) def main(): if __name__ == '__main__': from py_wake.examples.data.iea37 import IEA37Site, IEA37_WindTurbines from py_wake import IEA37SimpleBastankhahGaussian import matplotlib.pyplot as plt site = IEA37Site(16) x, y = site.initial_position.T windTurbines = IEA37_WindTurbines() # NOJ wake model wind_farm_model = IEA37SimpleBastankhahGaussian(site, windTurbines) simulation_result = wind_farm_model(x, y) fm = simulation_result.flow_map(wd=30) fm.plot_wake_map() plt.figure() fm.plot(fm.power_xylk()[:, :, 0, 0] * 1e-3, "Power [kW]") fm = simulation_result.flow_map(grid=HorizontalGrid(resolution=50)) plt.figure() fm.plot(fm.aep_xy(), "AEP [GWh]") plt.show() main()