import numpy as np from numpy import newaxis as na class AEPCalculator(): def __init__(self, wake_model): """Initialize AEPCalculator Parameters ---------- site : py_wake.site.Site windTurbines : WindTurbines wake_model : WakeModel """ self.wake_model = wake_model self.site = wake_model.site self.windTurbines = wake_model.windTurbines def _get_defaults(self, x_i, h_i, type_i, wd, ws): type_i, h_i, _ = self.windTurbines.get_defaults(len(x_i), type_i, h_i) wd, ws = self.site.get_defaults(wd, ws) return h_i, type_i, wd, ws def _run_wake_model(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None): h_i, type_i, wd, ws = self._get_defaults(x_i, h_i, type_i, wd, ws) self.WS_eff_ilk, self.TI_eff_ilk, self.power_ilk, self.ct_ilk, self.WD_ilk, self.WS_ilk, self.TI_ilk, self.P_ilk =\ self.wake_model.calc_wake(x_i, y_i, h_i, type_i, wd, ws) def calculate_AEP(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None): """Calculate AEP In addition effective wind speed, turbulence intensity, and the power, ct and probability is calculated Parameters ---------- x_i : array_like X position of wind turbines y_i : array_like Y position of wind turbines h_i : array_like or None, optional Hub height of wind turbines\n If None, default, the standard hub height is used type_i array_like or None, optional Wind turbine types\n If None, default, the first type is used (type=0) wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws Returns ------- AEP_GWh_ilk : array_like AEP in GWh """ self._run_wake_model(x_i=x_i, y_i=y_i, h_i=h_i, type_i=type_i, wd=wd, ws=ws) AEP_GWh_ilk = self.power_ilk * self.P_ilk * 24 * 365 * 1e-9 return AEP_GWh_ilk def calculate_AEP_no_wake_loss(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None): """Calculate AEP without wake loss(GWh). Same input as calculate_AEP""" h_i, type_i, wd, ws = self._get_defaults(x_i, h_i, type_i, wd=wd, ws=ws) # Find local wind speed, wind direction, turbulence intensity and probability self.WD_ilk, self.WS_ilk, self.TI_ilk, self.P_ilk = self.site.local_wind( x_i=x_i, y_i=y_i, h_i=h_i, wd=wd, ws=ws) self.power_ilk = self.windTurbines.power(self.WS_ilk, type_i) AEP_GWh_ilk = self.power_ilk * self.P_ilk * 24 * 365 * 1e-9 return AEP_GWh_ilk def wake_map(self, x_j=None, y_j=None, height_level=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None): """Calculate wake(effective wind speed) map Parameters ---------- x_j : array_like or None, optional X position map points y_j : array_like Y position of map points height_level : int, float or None, optional Height of wake map\n If None, default, the mean hub height is used wt_x : array_like, optional X position of wind turbines wt_y : array_like, optional Y position of wind turbines wt_type : array_like or None, optional Type of the wind turbines wt_height : array_like or None, optional Hub height of the wind turbines\n If None, default, the standard hub height is used wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws Returns ------- X_j : array_like 2d array of map x positions Y_j : array_like 2d array of map y positions WS_eff_avg : array_like 2d array of average effective local wind speed taking into account the probability of wind direction and speed See Also -------- plot_wake_map """ # X_j, Y_j, WS_eff_jlk, P_ilk = self._eff_map( # 'WS', x_j, y_j, h, wt_x, wt_y, wt_type, wt_height, wd, ws) res = self.wake_model.ws_map(x_j=x_j, y_j=y_j, h=height_level, wt_x_i=wt_x, wt_y_i=wt_y, wt_type_i=wt_type, wt_h_i=wt_height, wd=wd, ws=ws) X_j, Y_j, WS_eff_jlk, WS_jlk, P_ilk = res # if P_ilk.sum() > 0: # WS_eff_jlk = WS_eff_jlk * (P_ilk / P_ilk.sum((1, 2))) return X_j, Y_j, WS_eff_jlk.sum((1, 2)).reshape(X_j.shape) def ti_map(self, x_j=None, y_j=None, height_level=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None): """Calculate turbulence intensity map Parameters ---------- x_j : array_like or None, optional X position map points y_j : array_like Y position of map points height_level : int, float or None, optional Height of wake map\n If None, default, the mean hub height is used wt_x : array_like, optional X position of wind turbines wt_y : array_like, optional Y position of wind turbines wt_type : array_like or None, optional Type of the wind turbines wt_height : array_like or None, optional Hub height of the wind turbines\n If None, default, the standard hub height is used wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws Returns ------- X_j : array_like 2d array of map x positions Y_j : array_like 2d array of map y positions WS_eff_avg : array_like 2d array of average effective local wind speed taking into account the probability of wind direction and speed See Also -------- plot_wake_map """ X_j, Y_j, TI_eff_jlk, P_ilk = self.wake_model.ti_map(x_j=x_j, y_j=y_j, h=height_level, wt_x_i=wt_x, wt_y_i=wt_y, wt_type_i=wt_type, wt_h_i=wt_height, wd=wd, ws=ws) if P_ilk.sum() > 0: TI_eff_jlk = TI_eff_jlk * (P_ilk / P_ilk.sum((1, 2))) return X_j, Y_j, TI_eff_jlk.sum((1, 2)).reshape(X_j.shape) def plot_wake_map(self, x_j=None, y_j=None, h=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None, ax=None, levels=100): """Plot wake(effective wind speed) map Parameters ---------- x_j : array_like or None, optional X position map points y_j : array_like Y position of map points h : int, float or None, optional Height of wake map\n If None, default, the mean hub height is used wt_x : array_like, optional X position of wind turbines wt_y : array_like, optional Y position of wind turbines wt_type : array_like or None, optional Type of the wind turbines wt_height : array_like or None, optional Hub height of the wind turbines\n If None, default, the standard hub height is used wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws ax : pyplot or matplotlib axes object, default None Axes to plot on levels : int or array_like levels for pyplot.contourf """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() X, Y, Z = self.wake_map(x_j, y_j, h, wt_x, wt_y, wt_type, wt_height, wd, ws) c = ax.contourf(X, Y, Z, levels, cmap='Blues_r') plt.colorbar(c, label='wind speed [m/s]') def aep_map(self, x_j=None, y_j=None, type_j=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None): """Calculate AEP map The map represents the of AEP produced by a new turbine at the specified positions Parameters ---------- x_j : array_like or None, optional X position map points (potential turbine positions) y_j : array_like Y position of map points (potential turbine positions) type_j : int, float or None, optional Type of potential turbine positions\n If None, default, first turbine type(0) is used wt_x : array_like, optional X position of the current wind turbines wt_y : array_like, optional Y position of the current wind turbines wt_type : array_like or None, optional Type of the current wind turbines wt_height : array_like or None, optional Hub height of the current wind turbines\n If None, default, the standard hub height is used wd : int, float, array_like or None Wind directions(s)\n If None, default, the wake is calculated for site.default_wd ws : int, float, array_like or None Wind speed(s)\n If None, default, the wake is calculated for site.default_ws Returns ------- X_j : array_like 2d array of map x positions Y_j : array_like 2d array of map y positions WS_eff_avg : array_like 2d array of average effective local wind speed taking into account the probability of wind direction and speed """ h_j = self.windTurbines.hub_height(type_j) res = self.wake_model.ws_map(x_j=x_j, y_j=y_j, h=h_j, wt_x_i=wt_x, wt_y_i=wt_y, wt_type_i=wt_type, wt_h_i=wt_height, wd=wd, ws=ws) X_j, Y_j, WS_eff_jlk, WS_jlk, P_jlk = res # power_jlk = self.windTurbines.power_func(WS_eff_jlk, type_j) # aep_jlk = power_jlk * P_jlk * 24 * 365 * 1e-9 # return X_j, Y_j, aep_jlk.sum((1, 2)).reshape(X_j.shape) if P_jlk.sum() > 0: P_jlk /= P_jlk.sum((1, 2)) # same as above but requires less memory return X_j, Y_j, ((self.windTurbines.power(WS_eff_jlk, type_j) * P_jlk).sum((1, 2)) * 24 * 365 * 1e-9).reshape(X_j.shape) def main(): if __name__ == '__main__': from py_wake.examples.data.iea37 import iea37_path from py_wake.examples.data.iea37._iea37 import IEA37Site from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines from py_wake.wake_models import NOJ # setup site, turbines and wakemodel site = IEA37Site(16) x, y = site.initial_position.T windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml') wake_model = NOJ(site, windTurbines) # calculate AEP aep_calculator = AEPCalculator(wake_model) aep = aep_calculator.calculate_AEP(x, y)[0].sum() print(aep_calculator.WS_eff_ilk.shape) # plot wake map import matplotlib.pyplot as plt aep_calculator.plot_wake_map(wt_x=x, wt_y=y, wd=[0], ws=[9]) plt.title('AEP: %.2f GWh' % aep) windTurbines.plot(x, y) plt.show() main()