import matplotlib.pyplot as plt import numpy as np from py_wake.site.shear import PowerShear import py_wake.utils.xarray_utils # register ilk function @UnusedImport import xarray as xr from abc import ABC, abstractmethod from py_wake.utils.xarray_utils import da2py """ suffixs: - i: Local point (wind turbines) - j: Local point (downstream turbines or positions) - l: Wind directions - k: Wind speeds - m: Height above ground """ class LocalWind(xr.Dataset): __slots__ = ('wd_bin_size') def __init__(self, x_i, y_i, h_i, wd, ws, time, wd_bin_size, WD=None, WS=None, TI=None, P=None): """ Parameters ---------- WD : array_like local free flow wind directions WS : array_like local free flow wind speeds TI : array_like local free flow turbulence intensity P : array_like Probability/weight """ ws = np.atleast_1d(ws) if time is not False: assert len(wd) == len(ws) if time is True: time = np.arange(len(wd)) coords = {'time': time, 'wd': ('time', wd), 'ws': ('time', ws)} else: coords = {'wd': wd, 'ws': np.atleast_1d(ws)} assert len(np.atleast_1d(x_i)) == len(np.atleast_1d(y_i)) n_i = max(len(np.atleast_1d(x_i)), len(np.atleast_1d(h_i))) coords['i'] = np.arange(n_i) for k, v in [('x', x_i), ('y', y_i), ('h', h_i)]: if v is not None: coords[k] = ('i', np.zeros(n_i) + v) xr.Dataset.__init__(self, data_vars={k: da2py(v, include_dims=True) for k, v in [('WD', WD), ('WS', WS), ('TI', TI), ('P', P)] if v is not None}, coords={k: da2py(v) for k, v in coords.items()}) self.attrs['wd_bin_size'] = wd_bin_size # set localWind.WS_ilk etc. for k in ['WD', 'WS', 'TI', 'P', 'TI_std']: setattr(self.__class__, "%s_ilk" % k, property(lambda self, k=k: self[k].ilk())) def set_data_array(self, data_array, name, description): if data_array is not None: data_array.attrs.update({'Description': description}) self[name] = data_array def set_W(self, ws, wd, ti, ws_bins, use_WS=False): for da, name, desc in [(ws, 'WS', 'Local free-stream wind speed [m/s]'), (wd, 'WD', 'Local free-stream wind direction [deg]'), (ti, 'TI', 'Local free-stream turbulence intensity')]: self.set_data_array(da, name, desc) # upper and lower bounds of wind speed bins WS = [self.ws, self.WS][use_WS] lattr = {'Description': 'Lower bound of wind speed bins [m/s]'} uattr = {'Description': 'Upper bound of wind speed bins [m/s]'} if not hasattr(ws_bins, '__len__') or len(ws_bins) != len(WS) + 1: if len(WS.shape) and WS.shape[-1] > 1: d = np.diff(WS) / 2 ws_bins = np.maximum(np.concatenate( [WS[..., :1] - d[..., :1], WS[..., :-1] + d, WS[..., -1:] + d[..., -1:]], -1), 0) else: # WS is single value if ws_bins is None: ws_bins = 1 ws_bins = WS.data + np.array([-ws_bins / 2, ws_bins / 2]) self['ws_lower'] = xr.DataArray(ws_bins[..., :-1], dims=WS.dims, attrs=lattr) self['ws_upper'] = xr.DataArray(ws_bins[..., 1:], dims=WS.dims, attrs=uattr) else: self['ws_lower'] = xr.DataArray(ws_bins[:-1], dims=['ws'], attrs=lattr) self['ws_upper'] = xr.DataArray(ws_bins[1:], dims=['ws'], attrs=uattr) class Site(ABC): def __init__(self, distance): self.distance = distance self.default_ws = np.arange(3, 26.) self.default_wd = np.arange(360) @property def distance(self): return self._distance @distance.setter def distance(self, distance): self._distance = distance distance.site = self def get_defaults(self, wd=None, ws=None): if wd is None: wd = self.default_wd else: wd = np.atleast_1d(wd) if ws is None: ws = self.default_ws else: ws = np.atleast_1d(ws) return wd, ws def local_wind(self, x_i, y_i, h_i=None, wd=None, ws=None, time=False, wd_bin_size=None, ws_bins=None): """Local free flow wind conditions Parameters ---------- x_i : array_like Local x coordinate y_i : array_like Local y coordinate h_i : array_like, optional Local h coordinate, i.e., heights above ground wd : float, int or array_like, optional Global wind direction(s). Override self.default_wd ws : float, int or array_like, optional Global wind speed(s). Override self.default_ws time : boolean or array_like If True or array_like, wd and ws is interpreted as a time series If False, full wd x ws matrix is computed wd_bin_size : int or float, optional Size of wind direction bins. default is size between first and second element in default_wd ws_bin : array_like or None, optional Wind speed bin edges Returns ------- LocalWind object containing: WD_ilk : array_like local free flow wind directions WS_ilk : array_like local free flow wind speeds TI_ilk : array_like local free flow turbulence intensity P_ilk : array_like Probability/weight """ wd, ws = self.get_defaults(wd, ws) wd_bin_size = self.wd_bin_size(wd, wd_bin_size) lw = LocalWind(x_i, y_i, h_i, wd, ws, time, wd_bin_size) return self._local_wind(lw, ws_bins) @abstractmethod def _local_wind(self, localWind, ws_bins=None): """Local free flow wind conditions Parameters ---------- localWind : LocalWind xarray dataset containing coordinates x, y, h, wd, ws ws_bin : array_like or None, optional Wind speed bin edges Returns ------- LocalWind xarray dataset containing: WD : DataArray local free flow wind directions WS : DataArray local free flow wind speeds TI : DataArray local free flow turbulence intensity P : DataArray Probability/weight """ def wt2wt_distances(self, WD_il): return self.distance(WD_il) @abstractmethod def elevation(self, x_i, y_i): """Local terrain elevation (height above mean sea level) Parameters ---------- x_i : array_like Local x coordinate y_i : array_like Local y coordinate Returns ------- elevation : array_like """ def wd_bin_size(self, wd, wd_bin_size=None): wd = np.atleast_1d(wd) if wd_bin_size is not None: return wd_bin_size elif len(wd) > 1 and len(np.unique(np.diff(wd))) == 1: return wd[1] - wd[0] else: return 360 / len(np.atleast_1d(wd)) def ws_bins(self, WS, ws_bins=None): # TODO: delete function if not isinstance(WS, xr.DataArray): WS = xr.DataArray(WS, [('ws', np.atleast_1d(WS))]) if not hasattr(ws_bins, '__len__') or len(ws_bins) != len(WS) + 1: if len(WS.shape) and WS.shape[-1] > 1: d = np.diff(WS) / 2 ws_bins = np.maximum(np.concatenate( [WS[..., :1] - d[..., :1], WS[..., :-1] + d, WS[..., -1:] + d[..., -1:]], -1), 0) else: # WS is single value if ws_bins is None: ws_bins = 1 ws_bins = WS.data + np.array([-ws_bins / 2, ws_bins / 2]) else: ws_bins = np.asarray(ws_bins) return xr.Dataset({'ws_lower': (WS.dims, ws_bins[..., :-1]), 'ws_upper': (WS.dims, ws_bins[..., 1:])}, coords=WS.coords) def _sector(self, wd): sector = np.zeros(360, dtype=int) d_wd = (np.diff(np.r_[wd, wd[0]]) % 360) / 2 assert np.all(d_wd == d_wd[0]), "Wind directions must be equidistant" lower = np.ceil(wd - d_wd).astype(int) upper = np.ceil(wd + d_wd).astype(int) for i, (lo, up) in enumerate(zip(lower, upper)): if lo < 0: sector[lo % 360 + 1:] = i lo = 0 if up > 359: sector[:up % 360 + 1] = i up = 359 sector[lo + 1:up + 1] = i return sector def plot_ws_distribution(self, x=0, y=0, h=70, wd=[0], ws=np.arange(0.05, 30.05, .1), include_wd_distribution=False, ax=None): """Plot wind speed distribution Parameters ---------- x : int or float Local x coordinate y : int or float Local y coordinate h : int or float Local height above ground wd : int or array_like Wind direction(s) (one curve pr wind direction) ws : array_like, optional Wind speeds to calculate for include_wd_distributeion : bool, default is False If true, the wind speed probability distributions are multiplied by the wind direction probability. The sector size is set to 360 / len(wd). This only makes sense if the wd array is evenly distributed ax : pyplot or matplotlib axes object, default None """ if ax is None: ax = plt lbl = "Wind direction: %d deg" if include_wd_distribution: lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), ws=ws, wd_bin_size=1) lw.coords['sector'] = ('wd', self._sector(wd)) P = lw.P.groupby('sector').sum() v = 360 / len(wd) / 2 lbl += r"$\pm$%s deg" % ((int(v), v)[(v % 2) != 0]) else: lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=wd, ws=ws, wd_bin_size=1) P = lw.P if 'ws' not in P.dims: P = P.broadcast_like(lw.WS).T P = P / P.sum('ws') # exclude wd probability if 'i' in P.dims: P = P.squeeze('i') for wd, p in zip(wd, P): ax.plot(ws, p * 10, label=lbl % wd) ax.xlabel('Wind speed [m/s]') ax.ylabel('Probability') ax.legend(loc=1) return P def plot_wd_distribution(self, x=0, y=0, h=70, n_wd=12, ws_bins=None, ax=None): """Plot wind direction (and speed) distribution Parameters ---------- x : int or float Local x coordinate y : int or float Local y coordinate h : int or float Local height above ground n_wd : int Number of wind direction sectors ws_bins : None, int or array_like, default is None Splits the wind direction sector pies into different colors to show the probability of different wind speeds\n If int, number of wind speed bins in the range 0-30\n If array_like, limits of the wind speed bins limited by ws_bins, e.g. [0,10,20], will show 0-10 m/wd_bin_size and 10-20 m/wd_bin_size ax : pyplot or matplotlib axes object, default None """ if ax is None: ax = plt assert 360 % n_wd == 0 wd_bin_size = 360 // n_wd wd = np.arange(0, 360, wd_bin_size) theta = wd / 180 * np.pi if not ax.__class__.__name__ == 'PolarAxesSubplot': if hasattr(ax, 'subplot'): ax.clf() ax = ax.subplot(111, projection='polar') else: ax.figure.clf() ax = ax.figure.add_subplot(111, projection='polar') ax.set_theta_direction(-1) ax.set_theta_offset(np.pi / 2.0) if ws_bins is None: if any(['ws' in v.dims for v in self.ds.data_vars.values()]): lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), wd_bin_size=1) lw['P'] = lw.P.sum('ws') else: lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), ws=[100], ws_bins=[0, 200], wd_bin_size=1) else: if not hasattr(ws_bins, '__len__'): ws_bins = np.linspace(0, 30, ws_bins) else: ws_bins = np.asarray(ws_bins) ws = ((ws_bins[1:] + ws_bins[:-1]) / 2) lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), ws=ws, wd_bin_size=1) lw.coords['sector'] = ('wd', self._sector(wd)) p = lw.P.groupby('sector').sum() if 'i' in p.dims: p = p.squeeze('i') if ws_bins is None or 'ws' not in p.dims: if 'ws' in p.dims: p = p.squeeze('ws') ax.bar(theta, p.data, width=np.deg2rad(wd_bin_size), bottom=0.0) else: p = p.T start_p = np.vstack([np.zeros_like(p[:1]), p.cumsum('ws')[:-1]]) for ws1, ws2, p_ws0, p_ws in zip(lw.ws_lower.data, lw.ws_upper.data, start_p, p): ax.bar(theta, p_ws, width=np.deg2rad(wd_bin_size), bottom=p_ws0, label="%s-%s m/s" % (ws1, ws2)) ax.legend(bbox_to_anchor=(1.15, 1.1)) ax.set_rlabel_position(-22.5) # Move radial labels away from plotted line ax.grid(True) return p.T from py_wake.site import xrsite # @NoMove # nopep8 UniformSite = xrsite.UniformSite UniformWeibullSite = xrsite.UniformWeibullSite def get_sector_xr(v, name): if isinstance(v, (int, float)): return xr.DataArray(v, coords=[], name=name) v = np.r_[v, np.atleast_1d(v)[0]] return xr.DataArray(v, coords=[('wd', np.linspace(0, 360, len(v)))], name=name) def main(): if __name__ == '__main__': f = [0.035972, 0.039487, 0.051674, 0.070002, 0.083645, 0.064348, 0.086432, 0.117705, 0.151576, 0.147379, 0.10012, 0.05166] A = [9.176929, 9.782334, 9.531809, 9.909545, 10.04269, 9.593921, 9.584007, 10.51499, 11.39895, 11.68746, 11.63732, 10.08803] k = [2.392578, 2.447266, 2.412109, 2.591797, 2.755859, 2.595703, 2.583984, 2.548828, 2.470703, 2.607422, 2.626953, 2.326172] ti = .1 h_ref = 100 alpha = .1 site = UniformWeibullSite(f, A, k, ti, shear=PowerShear(h_ref=h_ref, alpha=alpha)) x_i = y_i = np.arange(5) wdir_lst = np.arange(0, 360, 90) wsp_lst = np.arange(1, 20) local_wind = site.local_wind(x_i=x_i, y_i=y_i, h_i=h_ref, wd=wdir_lst, ws=wsp_lst) print(local_wind.WS_ilk.shape) site.plot_ws_distribution(0, 0, wdir_lst) plt.figure() z = np.arange(1, 100) u = [site.local_wind(x_i=[0], y_i=[0], h_i=[z_], wd=0, ws=10).WS_ilk[0][0] for z_ in z] plt.plot(u, z) plt.xlabel('Wind speed [m/s]') plt.ylabel('Height [m]') plt.show() main()