diff --git a/topfarm/_topfarm.py b/topfarm/_topfarm.py index f776c5b6b6c6576ef7a07f5edfcdd1551d960183..572c9efaa98d9012bbac72775a39658e9757dd61 100644 --- a/topfarm/_topfarm.py +++ b/topfarm/_topfarm.py @@ -32,18 +32,19 @@ class TopFarm(object): indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*']) min_x, min_y = self.boundary_comp.vertices.min(0) mean_x, mean_y = self.boundary_comp.vertices.mean(0) - indeps.add_output('turbineX', turbines[:, 0], units='m', ref=mean_x, ref0=min_x) - indeps.add_output('turbineY', turbines[:, 1], units='m', ref=mean_y, ref0=min_y) + if driver_options['optimizer'] == 'SLSQP': + min_x, min_y, mean_x, mean_y = 0, 0, 1, 1 # scaling disturbs SLSQP + indeps.add_output('turbineX', turbines[:, 0], units='m', ref0=min_x, ref=mean_x) + indeps.add_output('turbineY', turbines[:, 1], units='m', ref0=min_y, ref=mean_y) indeps.add_output('boundary', self.boundary_comp.vertices, units='m') prob.model.add_subsystem('cost_comp', cost_comp, promotes=['*']) prob.driver = ScipyOptimizeDriver() - #prob.driver.options['optimizer'] = optimizer prob.driver.options.update(driver_options) - if driver_options['optimizer']=='SLSQP': + design_var_kwargs = {} + if driver_options['optimizer'] == 'SLSQP': + # Default +/- sys.float_info.max does not work for SLSQP design_var_kwargs = {'lower': np.nan, 'upper': np.nan} - else: - design_var_kwargs = {} prob.model.add_design_var('turbineX', **design_var_kwargs) prob.model.add_design_var('turbineY', **design_var_kwargs) prob.model.add_objective('cost')