from openmdao.drivers.genetic_algorithm_driver import SimpleGADriver from openmdao.drivers.scipy_optimizer import ScipyOptimizeDriver from topfarm.drivers.my_simple_ga_driver import MySimpleGADriver from topfarm.drivers.random_search_driver import RandomSearchDriver class EasyScipyOptimizeDriver(ScipyOptimizeDriver): def __init__(self, optimizer='SLSQP', maxiter=200, tol=1e-6, disp=True): """ Parameters ---------- optimizer : {'COBYLA', 'SLSQP'} Gradients are only supported by SLSQP maxiter : int Maximum number of iterations. tol : float Tolerance for termination. For detailed control, use solver-specific options. disp : bool Set to False to prevent printing of Scipy convergence messages """ ScipyOptimizeDriver.__init__(self) self.options.update({'optimizer': optimizer, 'maxiter': maxiter, 'tol': tol, 'disp': disp}) try: from openmdao.drivers.pyoptsparse_driver import pyOptSparseDriver # Not working: # capi_return is NULL # Call-back cb_slfunc_in_slsqp__user__routines failed. # # class EasyPyOptSparseSLSQP(pyOptSparseDriver): # def __init__(self, maxit=200, acc=1e-6): # pyOptSparseDriver.__init__(self) # self.options.update({'optimizer': 'SLSQP'}) # self.opt_settings.update({'MAXIT': maxit, 'ACC': acc}) class EasyPyOptSparseIPOPT(pyOptSparseDriver): def __init__(self, max_iter=200): pyOptSparseDriver.__init__(self) self.options.update({'optimizer': 'IPOPT'}) self.opt_settings.update({'linear_solver': 'ma27', 'max_iter': max_iter}) except ModuleNotFoundError: class PyOptSparseMissingDriver(object): options = {} EasyPyOptSparseSLSQP = PyOptSparseMissingDriver EasyPyOptSparseIPOPT = PyOptSparseMissingDriver class EasySimpleGADriver(MySimpleGADriver): def __init__(self, max_gen=100, pop_size=25, Pm=None, Pc=.5, elitism=True, bits={}, debug_print=[], run_parallel=False, random_state=None): """SimpleGA driver with optional arguments Parameters ---------- max_gen : int Number of generations before termination. pop_size : int Number of points in the GA. pm : float Probability of mutation. pc : float Probability of cross over. elitism : bool, optional If True, replace worst performing point with best from previous generation each iteration. bits : dict, optional Number of bits of resolution. Default is an empty dict, where every unspecified variable is assumed to be integer, and the number of bits is calculated automatically. If you have a continuous var, you should set a bits value as a key in this dictionary. debug_print : list, optional List of what type of Driver variables to print at each iteration. Valid items in list are ‘desvars’,’ln_cons’,’nl_cons’,’objs’ run_parallel : bool Set to True to execute the points in a generation in parallel. """ MySimpleGADriver.__init__(self, max_gen=max_gen, pop_size=pop_size, Pm=Pm, Pc=Pc, elitism=elitism, bits=bits, debug_print=debug_print, run_parallel=run_parallel) if random_state is not None: self._randomstate = random_state class EasyRandomSearchDriver(RandomSearchDriver): def __init__(self, randomize_func, max_iter=100, disp=False): RandomSearchDriver.__init__(self, randomize_func=randomize_func, max_iter=max_iter, disp=disp)