Changes
Page history
Update regression approach powerlaw
authored
Sep 10, 2024
by
Jamie Engelhardt Simon
Show whitespace changes
Inline
Side-by-side
home/regression-approach.md
View page @
8dbe184f
...
...
@@ -9,6 +9,7 @@ title: regression approach - powerlaw
## Dependency
It is assumed the data can be described by a power law, expressed either as Y or X dependent (referring to the second and first axis on a fatigue curve).
...
...
@@ -132,5 +133,18 @@ X_{\Gamma} = X_s \left(X_{\textrm{d,max}} - X_{\textrm{d,min}}\right) + X_{\text
Y_{\Gamma} = Y_s \left(Y_{\textrm{d,max}} - Y_{\textrm{d,min}}\right) + Y_{\textrm{d,min}}
```
**Step 6**
<br>
Compute the adjustment coefficient associated with the quantile of interest -
if Y dependent
```
math
C_{\alpha} = \frac{Y_{\alpha}}{X_{\alpha}^m}
```
if X dependent
```
math
C_{\alpha} = \frac{X_{\alpha}}{Y_{\alpha}^m}
```