Update regression approach powerlaw authored by Jamie Engelhardt Simon's avatar Jamie Engelhardt Simon
...@@ -10,6 +10,7 @@ title: regression approach - powerlaw ...@@ -10,6 +10,7 @@ title: regression approach - powerlaw
## Dependency ## Dependency
It is assumed the data can be described by a power law, expressed either as Y or X dependent (referring to the second and first axis on a fatigue curve). It is assumed the data can be described by a power law, expressed either as Y or X dependent (referring to the second and first axis on a fatigue curve).
...@@ -123,8 +124,6 @@ E = E\left[:-I_{\alpha}\right], ...@@ -123,8 +124,6 @@ E = E\left[:-I_{\alpha}\right],
\quad X_{s} = X_{s}\left[:-I_{\alpha}\right], \quad X_{s} = X_{s}\left[:-I_{\alpha}\right],
\quad Y_{s} = Y_{s}\left[:-I_{\alpha}\right] \quad Y_{s} = Y_{s}\left[:-I_{\alpha}\right]
``` ```
The last entry in the scaled arrays are now the quantile of interest.
**Step 6** <br> **Step 6** <br>
Renormalize the data. Renormalize the data.
...@@ -132,6 +131,12 @@ Renormalize the data. ...@@ -132,6 +131,12 @@ Renormalize the data.
X_{\Gamma} = X_s \left(X_{\textrm{d,max}} - X_{\textrm{d,min}}\right) + X_{\textrm{d,min}}, \quad X_{\Gamma} = X_s \left(X_{\textrm{d,max}} - X_{\textrm{d,min}}\right) + X_{\textrm{d,min}}, \quad
Y_{\Gamma} = Y_s \left(Y_{\textrm{d,max}} - Y_{\textrm{d,min}}\right) + Y_{\textrm{d,min}} Y_{\Gamma} = Y_s \left(Y_{\textrm{d,max}} - Y_{\textrm{d,min}}\right) + Y_{\textrm{d,min}}
``` ```
Where the last entry is the exact quantile of interest
```math
X_{\alpha} = X_{\Gamma}[-1], \quad
Y_{\alpha} = Y_{\Gamma}[-1]
```
**Step 6** <br> **Step 6** <br>
Compute the adjustment coefficient associated with the quantile of interest - Compute the adjustment coefficient associated with the quantile of interest -
... ...
......