Update regression approach powerlaw authored by Jamie Engelhardt Simon's avatar Jamie Engelhardt Simon
......@@ -7,6 +7,7 @@ title: regression approach - powerlaw
## Dependency
It is assumed the data can be described by a power law, expressed either as Y or X dependent (referring to the second and first axis on a fatigue curve).
......@@ -97,11 +98,8 @@ E = Y_{\textrm{p}} - Y_{\textrm{d}}
<br>
<div align="center">
![subset_error_band](uploads/b35fa634cc7dc99f39255bca21e6fa5c/subset_error_band.png){width=25%}
</div>
<div align="center">
![quantile_exmaple_error](uploads/f6950315da8dfc9c3d3054c0dfd95cb5/quantile_exmaple_error.png){width=25%}
![subset_error_band](uploads/b35fa634cc7dc99f39255bca21e6fa5c/subset_error_band.png){width=35%}&nbsp;&nbsp;
![quantile_exmaple_error](uploads/f6950315da8dfc9c3d3054c0dfd95cb5/quantile_exmaple_error.png){width=35%}
</div>
Extract the data with a positive error. We are only interested in the positive difference, as these are an indication of the points below the mean line.
......@@ -112,6 +110,9 @@ E = E\left[E > 0\right], \quad X_{s} = X_{s}[E>0], \quad Y_{s} = Y_{s}[E>0]
Sort the data based on the error
```math
E = E\left[\textrm{argsort}\left(E\right)\right], \quad X_{s} = X_{s}[\textrm{argsort}\left(E\right)\right], \quad Y_{s} = Y_{s}[\textrm{argsort}\left(E\right)\right]
```
<br>
<div align="center">
......
......