From 74aedbbec5fa854d50ba619dad0519759b06a664 Mon Sep 17 00:00:00 2001 From: Jennifer Rinker <rink@win.dtu.dk> Date: Mon, 2 Oct 2017 11:45:55 +0200 Subject: [PATCH] moving md so it doesnt clutter repo --- python_vs_matlab.md | 188 -------------------------------------------- 1 file changed, 188 deletions(-) delete mode 100644 python_vs_matlab.md diff --git a/python_vs_matlab.md b/python_vs_matlab.md deleted file mode 100644 index a78bdd2..0000000 --- a/python_vs_matlab.md +++ /dev/null @@ -1,188 +0,0 @@ -# This is a work in progress - -Please don't read this. It requires a lot of formatting. - -For now, you can read all of this in a PDF [here](https://gitlab.windenergy.dtu.dk/python-at-risoe/scientific-python-workshops/2-getting-started/blob/master/matlab_vs_python.pdf). - -# Placing text below so I don't lose it, but it is not useful to others now - -Originally from [this page](http://reactorlab.net/resources-folder/matlab/P_to_M.html) -but modified to 1) be in markdown, 2) fix some errors, and 3) add more detail. - -<table> - <tr> - <th>Python</th> - <th>Matlab</th> - </tr> - <tr> - <td><ul> - <li>numeric variables are double precision if decimal added</li> - </ul> - <pre><code>a = 5. # this is a float -a = 5 # this is an int</code></pre> - </td> - <td><ul> - <li>numeric variables are double precision by default</li> - </ul> - <pre><code>a = 5.0; % this is a double</code></pre> - </td> - </tr> - <tr> - <td>Eve</td> - <td>Jackson</td> - </tr> -</table> - -# test - - - -numeric arrays are objects defined in NumPy package <br /> indexes start at 0 in Python <br /> structures are defined by indentation, no 'end' <br /> `A = np.empty(10) # initialize array A`| array indexes start at 1 in Matlab <br /> indentation is for readability only <br /> `for i=1:10` <br /> ` A(i) = i;` -for i in range(1,11): | end -   A.append(i) | A % display contents of A -   print(A[i-1]) | - | -# repeat which prints a series of | -# values | for i=0:2:10 - |     fprintf(' %i \n', i) -for i in range(0,11,2): | end -   print(i) | - | -# initialize an identity matrix | - | % MATLAB has built-in functions for -# import the numpy library for matrix operations | % common array initializations - | -import numpy as np | B = eye(100); - | -B = np.identity(3) | - | -# declare and initialize an array, | C = [1, 2, 3]; % or C = [1 2 3]; -# known as a list in Python | - | -C = [1, 2, 3] | - | -# initialize and print an array | -# array name = arange(start,stop,step) | % array name = [start:increment:end]; - | -import numpy as np | -C = np.arange(2,10,2) | C = [2:2:8] % leave off ; to display value -print(C) | - | -# print an array element on screen | -# array indexes start at 0  | % array indexes start at 1 - | -print(C[1]) | C(2) - | -# prints 4 using C from above table cell | % prints 4 using C from above table cell -# note square brackets C[1] | % note parentheses C(2) - | -# declare and initialize an array | -# with fixed interval between values | -import numpy as np | -C = np.linspace(2,8,4) | C = linspace(2,8,4); -# third param is optional and = # points | -# between and including 1st two points | % third param is optional and = # points -# if third param left off, default | % between and including 1st two points -# is 50 points | % if third param left off, default - | % is 100 points -# initialize a 2D array | % these three examples accomplish the - | % same thing - | -D = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | D = [1 2 3; 4 5 6; 7 8 9]; - | D = [1:3; 4:6; 7:9]; - | D = [1 2 3 - |      4 5 6 - |      7 8 9]; -# print element of 2D array | % array indexes start at 1 -# array indexes start at 0 |   -print(D[1][1]) # row 2, column 2 | -# prints 5 using D from above table cell | D(2,2) % row 2, column 2 - | % prints 5 using D from above table cell -# print selected sub array of 2D array | -# e.g., print rows 1 to 2 of column 1 | - | D(1:2,1) % rows 1 to 2 of column 1 -for i in range(0,2): | -   print(D[i][0]) | - | -# print all rows of column 1 of 2D | -# array | - | -import numpy as np | D(:,1) % all rows, column 1 -D = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | -Dsub = D[0:,0:1] | -print(Dsub) | - | -# logical expression | - | -a = 1 | a = 1 -b = 2 | b = 2; -if a == 1 or b == 3: | if a == 1 || b == 3 -   print('a = 2 or b = 3') |     fprintf('a = 2 or b = 3 \n'); - | end - | -# if structure | - | -if a == 1 and b != 3: | if a == 1 && b ~= 3 -   print('a=1 and b not 3'); |     fprintf('a=1 and b not 3 \n'); -   print('OK?') |     fprintf('OK? \n'); - | end - | -# if, else structure | - | a ~= 1 -if a != 1: |     fprintf('a is not 1 \n') -   print('a is not 1') | elseif b ~= 3 -elif b != 3: |     fprintf('b is not 3 \n') -   print('b is not 3') | else -else: |     fprintf('huh? \n') -   print('huh?') | end - | -# switch structure | - | switch menuChoice -# Python doesn't have a switch structure |     case 1 - |        % can do any actions in a case, e.g., -# any switch structure can be |        % call a user-defined function -# written as an if-else structure |         myMenuFunc01(); - |     case 2 -# switch structures may be quicker to |         myMenuFunc02(); -# read and write for applications such as menus |     case 3 - |         myMenuFunc03(); - |     otherwise - |         fprintf('invalid selection, try again') - | end - | -# program which calls a user-defined function | % main program and function definition must - | % be in separate files and function file -# define function, here I chose name myfunc | % must have same name as function name - | -def myfunc(x,y): | z = myfunc(2,3) -   return x**y # ** is exponentiation operator | % prints 8 for this input - | -# call function | ----- LISTING OF FILE myfunc.m ------ - | -z = myfunc(2,3) | function returnValue = myfunc(x,y) -print(z) |   returnValue = x^y; % ^ is exponentiation operator -# prints 8 for this input | - |   % function is a keyword - |   % returnValue is arbitrary variable name - |      -# matrix multiplication |   - |   -import numpy as np |   - | A = [2,3; 3,5]; -A = np.matrix( ((2,3), (3, 5)) ) | B = [1,2; 5,-1]; -B = np.matrix( ((1,2), (5, -1)) ) | - | C = A * B -C = A * B | -print(C) | - | -# plotting | - | -import numpy as np | -import matplotlib.pyplot as plt | -x = np.linspace(0,2*np.pi,100) | x = linspace(0,2*pi,100); -y = np.sin(x) | y = sin(x); -plt.plot(x,y) | plot(x,y) -plt.ylabel('sin(x)') | ylabel('sin(x)') -plt.xlabel('x') | xlabel('x') -plt.show() | - -- GitLab