# -*- coding: utf-8 -*- """ Created on Thu Apr 3 19:53:59 2014 @author: dave """ # always devide as floats #print(*objects, sep=' ', end='\n', file=sys.stdout) __author__ = 'David Verelst' __license__ = 'GPL' __version__ = '0.5' import os import copy import unittest import struct import math from time import time import codecs import scipy import scipy.io as sio import scipy.integrate as integrate import array import numpy as np import pandas as pd #import sympy # misc is part of prepost, which is available on the dtu wind gitlab server: # https://gitlab.windenergy.dtu.dk/dave/prepost from wetb.prepost import misc # wind energy python toolbox, available on the dtu wind redmine server: # http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools from wetb.fatigue_tools.rainflowcounting.rainflowcount import rainflow_astm as rainflow_astm from wetb.fatigue_tools.rainflowcounting.rfc_hist import rfc_hist as rfc_hist class LoadResults: """Read a HAWC2 result data file Usage: obj = LoadResults(file_path, file_name) This class is called like a function: HawcResultData() will read the specified file upon object initialization. Available output: obj.sig[timeStep,channel] : complete result file in a numpy array obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array obj.error_msg: is 'none' if everything went OK, otherwise it holds the error The ch_dict key/values pairs are structured differently for different type of channels. Currently supported channels are: For forcevec, momentvec, state commands: key: coord-bodyname-pos-sensortype-component global-tower-node-002-forcevec-z local-blade1-node-005-momentvec-z hub1-blade1-elem-011-zrel-1.00-state pos-z value: ch_dict[tag]['coord'] ch_dict[tag]['bodyname'] ch_dict[tag]['pos'] = pos ch_dict[tag]['sensortype'] ch_dict[tag]['component'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the DLL's this is: key: DLL-dll_name-io-io_nr DLL-yaw_control-outvec-3 DLL-yaw_control-inpvec-1 value: ch_dict[tag]['dll_name'] ch_dict[tag]['io'] ch_dict[tag]['io_nr'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the bearings this is: key: bearing-bearing_name-output_type-units bearing-shaft_nacelle-angle_speed-rpm value: ch_dict[tag]['bearing_name'] ch_dict[tag]['output_type'] ch_dict[tag]['chi'] ch_dict[tag]['units'] """ # ch_df columns, these are created by LoadResults._unified_channel_names cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component', 'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr']) # start with reading the .sel file, containing the info regarding # how to read the binary file and the channel information def __init__(self, file_path, file_name, debug=False, usecols=None, readdata=True): self.debug = debug # timer in debug mode if self.debug: start = time() self.file_path = file_path # remove .log, .dat, .sel extensions who might be accedental left if file_name[-4:] in ['.htc','.sel','.dat','.log']: file_name = file_name[:-4] # FIXME: since HAWC2 will always have lower case output files, convert # any wrongly used upper case letters to lower case here self.file_name = file_name.lower() self.read_sel() # create for any supported channel the # continue if the file has been succesfully read if self.error_msg == 'none': # load the channel id's and scale factors self.scale_factors = self.data_sel() # with the sel file loaded, we have all the channel names to # squeeze into a more consistant naming scheme self._unified_channel_names() # only read when asked for if readdata: # if there is sel file but it is empty or whatever else # FilType will not exists try: # read the binary file if self.FileType == 'BINARY': self.read_bin(self.scale_factors, usecols=usecols) # read the ASCII file elif self.FileType == 'ASCII': self.read_ascii(usecols=usecols) else: print('='*79) print('unknown file type: ' + self.FileType) print('='*79) self.error_msg = 'error: unknown file type' self.sig = [] except: print('='*79) print('couldn\'t determine FileType') print('='*79) self.error_msg = 'error: no file type' self.sig = [] if self.debug: stop = time() - start print('time to load HAWC2 file:', stop, 's') def read_sel(self): # anticipate error on file reading try: # open file, read and close go_sel = os.path.join(self.file_path, self.file_name + '.sel') FILE = open(go_sel, "r") self.lines = FILE.readlines() FILE.close() self.error_msg = 'none' # error message if the file does not exists except: # print(26*' ' + 'ERROR' print(50*'=') print(self.file_path) print(self.file_name + '.sel could not be found') print(50*'=') self.error_msg = 'error: file not found' def data_sel(self): # scan through all the lines in the file line_nr = 1 # channel counter for ch_details ch = 0 for line in self.lines: # on line 9 we can read following paramaters: if line_nr == 9: # remove the end of line character line = line.replace('\n','').replace('\r', '') settings = line.split(' ') # delete all empty string values for k in range(settings.count('')): settings.remove('') # and assign proper values with correct data type self.N = int(settings[0]) self.Nch = int(settings[1]) self.Time = float(settings[2]) self.FileType = settings[3] self.Freq = self.N/self.Time # prepare list variables self.ch_details = np.ndarray(shape=(self.Nch,3),dtype='<U100') # it seems that float64 reeds the data correctly from the file scale_factors = scipy.zeros(self.Nch, dtype='Float64') #self.scale_factors_dec = scipy.zeros(self.Nch, dtype='f8') i = 0 # starting from line 13, we have the channels info if line_nr > 12: # read the signal details if line_nr < 13 + self.Nch: # remove leading and trailing whitespaces from line parts self.ch_details[ch,0] = str(line[12:43]).strip() # chID self.ch_details[ch,1] = str(line[43:54]).strip() # chUnits self.ch_details[ch,2] = str(line[54:-1]).strip() # chDescr ch += 1 # read the signal scale parameters for binary format elif line_nr > 14 + self.Nch: scale_factors[i] = line # print(scale_factors[i] #self.scale_factors_dec[i] = D.Decimal(line) i = i + 1 # stop going through the lines if at the end of the file if line_nr == 2*self.Nch + 14: self.scale_factors = scale_factors if self.debug: print('N ', self.N) print('Nch ', self.Nch) print('Time ', self.Time) print('FileType', self.FileType) print('Freq ', self.Freq) print('scale_factors', scale_factors.shape) return scale_factors break # counting the line numbers line_nr = line_nr + 1 def read(self, usecols=False): """ This whole LoadResults needs to be refactered because it is crap. Keep the old ones for backwards compatibility """ if self.FileType == 'ASCII': self.read_ascii(usecols=usecols) elif self.FileType == 'BINARY': self.read_bin(self.scale_factors, usecols=usecols) def read_bin(self, scale_factors, usecols=False): if not usecols: usecols = list(range(0, self.Nch)) fid = open(os.path.join(self.file_path, self.file_name) + '.dat', 'rb') self.sig = np.zeros( (self.N, len(usecols)) ) for j, i in enumerate(usecols): fid.seek(i*self.N*2,0) self.sig[:,j] = np.fromfile(fid, 'int16', self.N)*scale_factors[i] def read_bin_old(self, scale_factors): # if there is an error reading the binary file (for instance if empty) try: # read the binary file go_binary = os.path.join(self.file_path, self.file_name) + '.dat' FILE = open(go_binary, mode='rb') # create array, put all the binary elements as one long chain in it binvalues = array.array('h') binvalues.fromfile(FILE, self.N * self.Nch) FILE.close() # convert now to a structured numpy array # sig = np.array(binvalues, np.float) # sig = np.array(binvalues) # this is faster! the saved bin values are only of type int16 sig = np.array(binvalues, dtype='int16') if self.debug: print(self.N, self.Nch, sig.shape) # sig = np.reshape(sig, (self.Nch, self.N)) # # apperently Nch and N had to be reversed to read it correctly # # is this because we are reading a Fortran array with Python C # # code? so now transpose again so we have sig(time, channel) # sig = np.transpose(sig) # reshape the array to 2D and transpose (Fortran to C array) sig = sig.reshape((self.Nch, self.N)).T # create diagonal vector of size (Nch,Nch) dig = np.diag(scale_factors) # now all rows of column 1 are multiplied with dig(1,1) sig = np.dot(sig,dig) self.sig = sig # 'file name;' + 'lnr;msg;'*(len(MsgList)) + '\n' except: self.sig = [] self.error_msg = 'error: reading binary file failed' print('========================================================') print(self.error_msg) print(self.file_path) print(self.file_name) print('========================================================') def read_ascii(self, usecols=None): try: go_ascii = os.path.join(self.file_path, self.file_name) + '.dat' # self.sig = np.genfromtxt(go_ascii) self.sig = np.loadtxt(go_ascii, usecols=usecols) # self.sig = np.fromfile(go_ascii, dtype=np.float32, sep=' ') # self.sig = self.sig.reshape((self.N, self.Nch)) except: self.sig = [] self.error_msg = 'error: reading ascii file failed' print('========================================================') print(self.error_msg) print(self.file_path) print(self.file_name) print('========================================================') # print '========================================================' # print 'ASCII reading not implemented yet' # print '========================================================' # self.sig = [] # self.error_msg = 'error: ASCII reading not implemented yet' def reformat_sig_details(self): """Change HAWC2 output description of the channels short descriptive strings, usable in plots obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array """ # CONFIGURATION: mappings between HAWC2 and short good output: change_list = [] change_list.append( ['original','new improved'] ) # change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] ) # change_list.append( ['My coo: hub1','blade1 root bending: edge'] ) # change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] ) # # change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] ) # change_list.append( ['My coo: hub2','blade2 root bending: edge'] ) # change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] ) # # change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] ) # change_list.append( ['My coo: hub3','blade3 root bending: edge'] ) # change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] ) change_list.append( ['Mx coo: blade1','blade1 flap'] ) change_list.append( ['My coo: blade1','blade1 edge'] ) change_list.append( ['Mz coo: blade1','blade1 torsion'] ) change_list.append( ['Mx coo: blade2','blade2 flap'] ) change_list.append( ['My coo: blade2','blade2 edge'] ) change_list.append( ['Mz coo: blade2','blade2 torsion'] ) change_list.append( ['Mx coo: blade3','blade3 flap'] ) change_list.append( ['My coo: blade3','blade3 edeg'] ) change_list.append( ['Mz coo: blade3','blade3 torsion'] ) change_list.append( ['Mx coo: hub1','blade1 out-of-plane'] ) change_list.append( ['My coo: hub1','blade1 in-plane'] ) change_list.append( ['Mz coo: hub1','blade1 torsion'] ) change_list.append( ['Mx coo: hub2','blade2 out-of-plane'] ) change_list.append( ['My coo: hub2','blade2 in-plane'] ) change_list.append( ['Mz coo: hub2','blade2 torsion'] ) change_list.append( ['Mx coo: hub3','blade3 out-of-plane'] ) change_list.append( ['My coo: hub3','blade3 in-plane'] ) change_list.append( ['Mz coo: hub3','blade3 torsion'] ) # this one will create a false positive for tower node nr1 change_list.append( ['Mx coo: tower','tower top momemt FA'] ) change_list.append( ['My coo: tower','tower top momemt SS'] ) change_list.append( ['Mz coo: tower','yaw-moment'] ) change_list.append( ['Mx coo: chasis','chasis momemt FA'] ) change_list.append( ['My coo: chasis','yaw-moment chasis'] ) change_list.append( ['Mz coo: chasis','chasis moment SS'] ) change_list.append( ['DLL inp 2: 2','tower clearance'] ) self.ch_details_new = np.ndarray(shape=(self.Nch,3),dtype='<U100') # approach: look for a specific description and change it. # This approach is slow, but will not fail if the channel numbers change # over different simulations for ch in range(self.Nch): # the change_list will always be slower, so this loop will be # inside the bigger loop of all channels self.ch_details_new[ch,:] = self.ch_details[ch,:] for k in range(len(change_list)): if change_list[k][0] == self.ch_details[ch,0]: self.ch_details_new[ch,0] = change_list[k][1] # channel description should be unique, so delete current # entry and stop looking in the change list del change_list[k] break # self.ch_details_new = ch_details_new def _unified_channel_names(self): """ Make certain channels independent from their index. The unified channel dictionary ch_dict holds consequently named channels as the key, and the all information is stored in the value as another dictionary. The ch_dict key/values pairs are structured differently for different type of channels. Currently supported channels are: For forcevec, momentvec, state commands: node numbers start with 0 at the root element numbers start with 1 at the root key: coord-bodyname-pos-sensortype-component global-tower-node-002-forcevec-z local-blade1-node-005-momentvec-z hub1-blade1-elem-011-zrel-1.00-state pos-z value: ch_dict[tag]['coord'] ch_dict[tag]['bodyname'] ch_dict[tag]['pos'] ch_dict[tag]['sensortype'] ch_dict[tag]['component'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the DLL's this is: key: DLL-dll_name-io-io_nr DLL-yaw_control-outvec-3 DLL-yaw_control-inpvec-1 value: ch_dict[tag]['dll_name'] ch_dict[tag]['io'] ch_dict[tag]['io_nr'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the bearings this is: key: bearing-bearing_name-output_type-units bearing-shaft_nacelle-angle_speed-rpm value: ch_dict[tag]['bearing_name'] ch_dict[tag]['output_type'] ch_dict[tag]['chi'] ch_dict[tag]['units'] For many of the aero sensors: 'Cl', 'Cd', 'Alfa', 'Vrel' key: sensortype-blade_nr-pos Cl-1-0.01 value: ch_dict[tag]['sensortype'] ch_dict[tag]['blade_nr'] ch_dict[tag]['pos'] ch_dict[tag]['chi'] ch_dict[tag]['units'] """ # save them in a dictionary, use the new coherent naming structure # as the key, and as value again a dict that hols all the different # classifications: (chi, channel nr), (coord, coord), ... self.ch_dict = dict() # some channel ID's are unique, use them ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power', 'Ae rot. thrust', 'Time', 'Azi 1']) ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa']) ch_aerogrid = set(['a_grid', 'am_grid']) # also safe as df # cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', # 'component', 'pos', 'coord', 'sensortype', 'radius', # 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll', # 'azimuth', 'flap_nr']) df_dict = {col:[] for col in self.cols} df_dict['ch_name'] = [] # scan through all channels and see which can be converted # to sensible unified name for ch in range(self.Nch): items = self.ch_details[ch,2].split(' ') # remove empty values in the list items = misc.remove_items(items, '') dll = False # be carefull, identify only on the starting characters, because # the signal tag can hold random text that in some cases might # trigger a false positive # ----------------------------------------------------------------- # check for all the unique channel descriptions if self.ch_details[ch,0].strip() in ch_unique: tag = self.ch_details[ch,0].strip() channelinfo = {} channelinfo['units'] = self.ch_details[ch,1] channelinfo['sensortag'] = self.ch_details[ch,2] channelinfo['chi'] = ch # ----------------------------------------------------------------- # or in the long description: # 0 1 2 3 4 5 6 and up # MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT elif self.ch_details[ch,2].startswith('MomentM'): coord = items[5] bodyname = items[1].replace('Mbdy:', '') # set nodenr to sortable way, include leading zeros # node numbers start with 0 at the root nodenr = '%03i' % int(items[3]) # skip the attached the component #sensortype = items[0][:-2] # or give the sensor type the same name as in HAWC2 sensortype = 'momentvec' component = items[0][-1:len(items[0])] # the tag only exists if defined if len(items) > 6: sensortag = ' '.join(items[6:]) else: sensortag = '' # and tag it pos = 'node-%s' % nodenr tagitems = (coord,bodyname,pos,sensortype,component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch,1] # ----------------------------------------------------------------- # 0 1 2 3 4 5 6 7 and up # Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT elif self.ch_details[ch,2].startswith('Force'): coord = items[6] bodyname = items[2].replace('Mbdy:', '') nodenr = '%03i' % int(items[4]) # skipe the attached the component #sensortype = items[0] # or give the sensor type the same name as in HAWC2 sensortype = 'forcevec' component = items[1][1] if len(items) > 7: sensortag = ' '.join(items[7:]) else: sensortag = '' # and tag it pos = 'node-%s' % nodenr tagitems = (coord,bodyname,pos,sensortype,component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch,1] # ----------------------------------------------------------------- # 0 1 2 3 4 5 6 7 8 # State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade # 0 1 2 3 4 5 6 7 8 9+ # State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label # State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label elif self.ch_details[ch,2].startswith('State'): # or self.ch_details[ch,0].startswith('euler') \ # or self.ch_details[ch,0].startswith('ax') \ # or self.ch_details[ch,0].startswith('omega') \ # or self.ch_details[ch,0].startswith('proj'): coord = items[8] bodyname = items[3].replace('Mbdy:', '') # element numbers start with 1 at the root elementnr = '%03i' % int(items[5]) zrel = '%04.2f' % float(items[6].replace('Z-rel:', '')) # skip the attached the component #sensortype = ''.join(items[0:2]) # or give the sensor type the same name as in HAWC2 tmp = self.ch_details[ch,0].split(' ') sensortype = tmp[0] if sensortype.startswith('State'): sensortype += ' ' + tmp[1] component = items[2] if len(items) > 8: sensortag = ' '.join(items[9:]) else: sensortag = '' # and tag it pos = 'elem-%s-zrel-%s' % (elementnr, zrel) tagitems = (coord,bodyname,pos,sensortype,component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch,1] # ----------------------------------------------------------------- # DLL CONTROL I/O # there are two scenario's on how the channel description is formed # the channel id is always the same though # id for all three cases: # DLL out 1: 3 # DLL inp 2: 3 # description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output) # 0 1 2 3 4+ # yaw_control outvec 3 yaw_c input reference angle # description case 2 ("dll inpvec 2 1" in htc output): # 0 1 2 3 4 5 6+ # DLL : 2 inpvec : 4 mgen hss # description case 3 # 0 1 2 4 # hawc_dll :echo outvec : 1 elif self.ch_details[ch,0].startswith('DLL'): # case 3 if items[1][0] == ':echo': # hawc_dll named case (case 3) is polluted with colons items = self.ch_details[ch,2].replace(':','') items = items.split(' ') items = misc.remove_items(items, '') dll = items[1] io = items[2] io_nr = items[3] tag = 'DLL-%s-%s-%s' % (dll,io,io_nr) sensortag = '' # case 2: no reference to dll name elif self.ch_details[ch,2].startswith('DLL'): dll = items[2] io = items[3] io_nr = items[5] sensortag = ' '.join(items[6:]) # and tag it tag = 'DLL-%s-%s-%s' % (dll,io,io_nr) # case 1: type2 dll name is given else: dll = items[0] io = items[1] io_nr = items[2] sensortag = ' '.join(items[3:]) tag = 'DLL-%s-%s-%s' % (dll,io,io_nr) # save all info in the dict channelinfo = {} channelinfo['dll'] = dll channelinfo['io'] = io channelinfo['io_nr'] = io_nr channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch,1] # ----------------------------------------------------------------- # BEARING OUTPUS # bea1 angle_speed rpm shaft_nacelle angle speed elif self.ch_details[ch,0].startswith('bea'): output_type = self.ch_details[ch,0].split(' ')[1] bearing_name = items[0] units = self.ch_details[ch,1] # there is no label option for the bearing output # and tag it tag = 'bearing-%s-%s-%s' % (bearing_name,output_type,units) # save all info in the dict channelinfo = {} channelinfo['bearing_name'] = bearing_name channelinfo['output_type'] = output_type channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc # Cl, R= 0.5 deg Cl of blade 1 at radius 0.49 # Azi 1 deg Azimuth of blade 1 elif self.ch_details[ch,0].split(',')[0] in ch_aero: dscr_list = self.ch_details[ch,2].split(' ') dscr_list = misc.remove_items(dscr_list, '') sensortype = self.ch_details[ch,0].split(',')[0] radius = dscr_list[-1] # is this always valid? blade_nr = self.ch_details[ch,2].split('blade ')[1][0] # sometimes the units for aero sensors are wrong! units = self.ch_details[ch,1] # there is no label option # and tag it tag = '%s-%s-%s' % (sensortype,blade_nr,radius) # save all info in the dict channelinfo = {} channelinfo['sensortype'] = sensortype channelinfo['radius'] = float(radius) channelinfo['blade_nr'] = int(blade_nr) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # for the induction grid over the rotor # a_grid, azi 0.00 r 1.74 elif self.ch_details[ch,0].split(',')[0] in ch_aerogrid: items = self.ch_details[ch,0].split(',') sensortype = items[0] items2 = items[1].split(' ') items2 = misc.remove_items(items2, '') azi = items2[1] radius = items2[3] units = self.ch_details[ch,1] # and tag it tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius) # save all info in the dict channelinfo = {} channelinfo['sensortype'] = sensortype channelinfo['radius'] = float(radius) channelinfo['azimuth'] = float(azi) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # INDUCTION AT THE BLADE # 0: Induc. Vz, rpco, R= 1.4 # 1: m/s # 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo. # Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo. # Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo. # Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo. # Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo. elif self.ch_details[ch,0].strip()[:5] == 'Induc': items = self.ch_details[ch,2].split(' ') items = misc.remove_items(items, '') blade_nr = int(items[5]) radius = float(items[8].replace(',', '')) items = self.ch_details[ch,0].split(',') coord = items[1].strip() component = items[0][-2:] units = self.ch_details[ch,1] # and tag it rpl = (coord, blade_nr, component, radius) tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl # save all info in the dict channelinfo = {} channelinfo['blade_nr'] = blade_nr channelinfo['sensortype'] = 'induction' channelinfo['radius'] = radius channelinfo['coord'] = coord channelinfo['component'] = component channelinfo['units'] = units channelinfo['chi'] = ch # TODO: wind speed # some spaces have been trimmed here # WSP gl. coo.,Vy m/s # // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31 # WSP gl. coo.,Vdir_hor deg # Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31 # ----------------------------------------------------------------- # WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00 elif self.ch_details[ch,2].startswith('Water'): units = self.ch_details[ch,1] # but remove the comma x = items[-2][:-1] y = items[-1] # and tag it tag = 'watersurface-global-%s-%s' % (x, y) # save all info in the dict channelinfo = {} channelinfo['coord'] = 'global' channelinfo['pos'] = (float(x), float(y)) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # WIND SPEED # WSP gl. coo.,Vx elif self.ch_details[ch,0].startswith('WSP gl.'): units = self.ch_details[ch,1] direction = self.ch_details[ch,0].split(',')[1] tmp = self.ch_details[ch,2].split('pos')[1] x, y, z = tmp.split(',') x, y, z = x.strip(), y.strip(), z.strip() # and tag it tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z) # save all info in the dict channelinfo = {} channelinfo['coord'] = 'global' channelinfo['pos'] = (x, y, z) channelinfo['units'] = units channelinfo['chi'] = ch # WIND SPEED AT BLADE # 0: WSP Vx, glco, R= 61.5 # 2: Wind speed Vx of blade 1 at radius 61.52, global coo. elif self.ch_details[ch,0].startswith('WSP V'): units = self.ch_details[ch,1].strip() direction = self.ch_details[ch,0].split(' ')[1].strip() blade_nr = self.ch_details[ch,2].split('blade')[1].strip()[:2] radius = self.ch_details[ch,2].split('radius')[1].split(',')[0] coord = self.ch_details[ch,2].split(',')[1].strip() radius = radius.strip() blade_nr = blade_nr.strip() # and tag it rpl = (direction, blade_nr, radius, coord) tag = 'wsp-blade-%s-%s-%s-%s' % rpl # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['direction'] = direction channelinfo['blade_nr'] = int(blade_nr) channelinfo['radius'] = float(radius) channelinfo['units'] = units channelinfo['chi'] = ch # FLAP ANGLE # 2: Flap angle for blade 3 flap number 1 elif self.ch_details[ch,0][:7] == 'setbeta': units = self.ch_details[ch,1].strip() blade_nr = self.ch_details[ch,2].split('blade')[1].strip() blade_nr = blade_nr.split(' ')[0].strip() flap_nr = self.ch_details[ch,2].split(' ')[-1].strip() radius = radius.strip() blade_nr = blade_nr.strip() # and tag it tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr) # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['flap_nr'] = int(flap_nr) channelinfo['blade_nr'] = int(blade_nr) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # ignore all the other cases we don't know how to deal with else: # if we get here, we don't have support yet for that sensor # and hence we can't save it. Continue with next channel continue # ----------------------------------------------------------------- # ignore if we have a non unique tag if tag in self.ch_dict: jj = 1 while True: tag_new = tag + '_v%i' % jj if tag_new in self.ch_dict: jj += 1 else: tag = tag_new break # msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag # logging.warn(msg) # else: self.ch_dict[tag] = copy.copy(channelinfo) # ----------------------------------------------------------------- # save in for DataFrame format cols_ch = set(channelinfo.keys()) for col in cols_ch: df_dict[col].append(channelinfo[col]) # the remainder columns we have not had yet. Fill in blank for col in (self.cols - cols_ch): df_dict[col].append('') df_dict['ch_name'].append(tag) self.ch_df = pd.DataFrame(df_dict) self.ch_df.set_index('chi', inplace=True) def _ch_dict2df(self): """ Create a DataFrame version of the ch_dict, and the chi columns is set as the index """ # identify all the different columns cols = set() for ch_name, channelinfo in self.ch_dict.items(): cols.update(set(channelinfo.keys())) df_dict = {col:[] for col in cols} df_dict['ch_name'] = [] for ch_name, channelinfo in self.ch_dict.items(): cols_ch = set(channelinfo.keys()) for col in cols_ch: df_dict[col].append(channelinfo[col]) # the remainder columns we have not had yet. Fill in blank for col in (cols - cols_ch): df_dict[col].append('') df_dict['ch_name'].append(ch_name) self.ch_df = pd.DataFrame(df_dict) self.ch_df.set_index('chi', inplace=True) def _data_window(self, nr_rev=None, time=None): """ Based on a time interval, create a proper slice object ====================================================== The window will start at zero and ends with the covered time range of the time input. Paramters --------- nr_rev : int, default=None NOT IMPLEMENTED YET time : list, default=None time = [time start, time stop] Returns ------- slice_ window zoomtype time_range time_range = [0, time[1]] """ # ------------------------------------------------- # determine zome range if necesary # ------------------------------------------------- time_range = None if nr_rev: raise NotImplementedError # input is a number of revolutions, get RPM and sample rate to # calculate the required range # TODO: automatich detection of RPM channel! time_range = nr_rev/(self.rpm_mean/60.) # convert to indices instead of seconds i_range = int(self.Freq*time_range) window = [0, time_range] # in case the first datapoint is not at 0 seconds i_zero = int(self.sig[0,0]*self.Freq) slice_ = np.r_[i_zero:i_range+i_zero] zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev' elif time.any(): time_range = time[1] - time[0] i_start = int(time[0]*self.Freq) i_end = int(time[1]*self.Freq) slice_ = np.r_[i_start:i_end] window = [time[0], time[1]] zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1]) return slice_, window, zoomtype, time_range # TODO: general signal method, this is not HAWC2 specific, move out def calc_stats(self, sig, i0=0, i1=-1): stats = {} # calculate the statistics values: stats['max'] = sig[i0:i1,:].max(axis=0) stats['min'] = sig[i0:i1,:].min(axis=0) stats['mean'] = sig[i0:i1,:].mean(axis=0) stats['std'] = sig[i0:i1,:].std(axis=0) stats['range'] = stats['max'] - stats['min'] stats['absmax'] = np.absolute(sig[i0:i1,:]).max(axis=0) stats['rms'] = np.sqrt(np.mean(sig[i0:i1,:]*sig[i0:i1,:], axis=0)) stats['int'] = integrate.trapz(sig[i0:i1,:], x=sig[i0:i1,0], axis=0) return stats # TODO: general signal method, this is not HAWC2 specific, move out def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1): """ signal is 1D """ try: sig_rf = rainflow_astm(signal) except: return [] if len(sig_rf) < 1 and not sig_rf: return [] hist_data, x, bin_avg = rfc_hist(sig_rf, no_bins) m = np.atleast_1d(m) eq = [] for i in range(len(m)): eq.append(np.power(np.sum(0.5 * hist_data *\ np.power(bin_avg, m[i])) / neq, 1. / m[i])) return eq # TODO: general signal method, this is not HAWC2 specific, move out def cycle_matrix(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12]): # import fatigue_tools.fatigue as ft # cycles, ampl_bin_mean, ampl_bin_edges, mean_bin_mean, mean_edges \ # = ft.cycle_matrix(signal, ampl_bins=no_bins, mean_bins=1, # rainflow_func=ft.rainflow_windap) # # in this case eq = sum( n_i*S_i^m ) # return [np.sum(cycles * ampl_bin_mean ** _m) for _m in m] try: sig_rf = rainflow_astm(signal) except: return [] if len(sig_rf) < 1 and not sig_rf: return [] hist_data, x, bin_avg = rfc_hist(sig_rf, no_bins) m = np.atleast_1d(m) return [np.sum(0.5 * hist_data * bin_avg ** _m) for _m in m] def blade_deflection(self): """ """ # select all the y deflection channels db = misc.DictDB(self.ch_dict) db.search({'sensortype' : 'state pos', 'component' : 'z'}) # sort the keys and save the mean values to an array/list chiz, zvals = [], [] for key in sorted(db.dict_sel.keys()): zvals.append(-self.sig[:,db.dict_sel[key]['chi']].mean()) chiz.append(db.dict_sel[key]['chi']) db.search({'sensortype' : 'state pos', 'component' : 'y'}) # sort the keys and save the mean values to an array/list chiy, yvals = [], [] for key in sorted(db.dict_sel.keys()): yvals.append(self.sig[:,db.dict_sel[key]['chi']].mean()) chiy.append(db.dict_sel[key]['chi']) return np.array(zvals), np.array(yvals) def save_csv(self, fname, fmt='%.18e', delimiter=','): """ Save to csv and use the unified channel names as columns """ map_sorting = {} # first, sort on channel index for ch_key, ch in self.ch_dict.items(): map_sorting[ch['chi']] = ch_key header = [] # not all channels might be present...iterate again over map_sorting for chi in map_sorting: try: sensortag = self.ch_dict[map_sorting[chi]]['sensortag'] header.append(map_sorting[chi] + ' // ' + sensortag) except: header.append(map_sorting[chi]) # and save print('saving...', end='') np.savetxt(fname, self.sig[:,list(map_sorting.keys())], fmt=fmt, delimiter=delimiter, header=delimiter.join(header)) print(fname) def save_df(self, fname): """ Save the HAWC2 data and sel file in a DataFrame that contains all the data, and all the channel information (the one from the sel file and the parsed from this function) """ self.sig self.ch_details self.ch_dict def ReadOutputAtTime(fname): """Distributed blade loading as generated by the HAWC2 output_at_time command. """ # because the formatting is really weird, we need to sanatize it a bit with open(fname, 'r') as f: # read the header from line 3 f.readline() f.readline() header = f.readline().replace('\r', '').replace('\n', '') cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]] # data = pd.read_fwf(fname, skiprows=3, header=None) # pd.read_table(fname, sep=' ', skiprows=3) # data.index.names = cols data = np.loadtxt(fname, skiprows=3) return pd.DataFrame(data, columns=cols) def ReadEigenBody(fname, debug=False): """ Read HAWC2 body eigenalysis result file ======================================= Parameters ---------- file_path : str file_name : str Returns ------- results : DataFrame Columns: body, Fd_hz, Fn_hz, log_decr_pct """ #Body data for body number : 3 with the name :nacelle #Results: fd [Hz] fn [Hz] log.decr [%] #Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02 FILE = open(fname) lines = FILE.readlines() FILE.close() df_dict = {'Fd_hz':[], 'Fn_hz':[], 'log_decr_pct':[], 'body':[]} for i, line in enumerate(lines): if debug: print('line nr: %5i' % i) # identify for which body we will read the data if line[:25] == 'Body data for body number': body = line.split(':')[2].rstrip().lstrip() # remove any annoying characters body = body.replace('\n','').replace('\r','') if debug: print('modes for body: %s' % body) # identify mode number and read the eigenfrequencies elif line[:8] == 'Mode nr:': linelist = line.replace('\n','').replace('\r','').split(':') #modenr = linelist[1].rstrip().lstrip() # text after Mode nr can be empty try: eigenmodes = linelist[2].rstrip().lstrip().split(' ') except IndexError: eigenmodes = ['0', '0', '0'] if debug: print(eigenmodes) # in case we have more than 3, remove all the empty ones # this can happen when there are NaN values if not len(eigenmodes) == 3: eigenmodes = linelist[2].rstrip().lstrip().split(' ') eigmod = [] for k in eigenmodes: if len(k) > 1: eigmod.append(k) #eigenmodes = eigmod else: eigmod = eigenmodes # remove any trailing spaces for each element for k in range(len(eigmod)): eigmod[k] = float(eigmod[k])#.lstrip().rstrip() df_dict['body'].append(body) df_dict['Fd_hz'].append(eigmod[0]) df_dict['Fn_hz'].append(eigmod[1]) df_dict['log_decr_pct'].append(eigmod[2]) return pd.DataFrame(df_dict) def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500): """ Read HAWC2 structure eigenalysis result file ============================================ The file looks as follows: #0 Version ID : HAWC2MB 11.3 #1 ___________________________________________________________________ #2 Structure eigenanalysis output #3 ___________________________________________________________________ #4 Time : 13:46:59 #5 Date : 28:11.2012 #6 ___________________________________________________________________ #7 Results: fd [Hz] fn [Hz] log.decr [%] #8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00 #... #302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02 Parameters ---------- file_path : str file_name : str debug : boolean, default=False max_modes : int Stop evaluating the result after max_modes number of modes have been identified Returns ------- modes_arr : ndarray(3,n) An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping decrement [%] for n different structural eigenmodes """ #0 Version ID : HAWC2MB 11.3 #1 ___________________________________________________________________ #2 Structure eigenanalysis output #3 ___________________________________________________________________ #4 Time : 13:46:59 #5 Date : 28:11.2012 #6 ___________________________________________________________________ #7 Results: fd [Hz] fn [Hz] log.decr [%] #8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00 # Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02 FILE = open(os.path.join(file_path, file_name)) lines = FILE.readlines() FILE.close() header_lines = 8 # we now the number of modes by having the number of lines nrofmodes = len(lines) - header_lines modes_arr = np.ndarray((3,nrofmodes)) for i, line in enumerate(lines): if i > max_modes: # cut off the unused rest modes_arr = modes_arr[:,:i] break # ignore the header if i < header_lines: continue # split up mode nr from the rest parts = line.split(':') #modenr = int(parts[1]) # get fd, fn and damping, but remove all empty items on the list modes_arr[:,i-header_lines]=misc.remove_items(parts[2].split(' '),'') return modes_arr class UserWind: """ """ def __init__(self): pass def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3, nr_vert=20, h_ME=500.0, fname=None, wdir=None): """ Parameters ---------- z_h : float Hub height r_blade_tip : float Blade tip radius a_phi : float, default=None :math:`a_{\\varphi} \\approx 0.5` parameter for the modified Ekman veer distribution. Values vary between -1.2 and 0.5. shear_exp : float, default=None nr_vert : int, default=3 nr_hor : int, default=20 h_ME : float, default=500 Modified Ekman parameter. Take roughly 500 for off shore sites, 1000 for on shore sites. fname : str, default=None When specified, the HAWC2 user defined veer input file will be written. wdir : float, default=None A constant veer angle, or yaw angle. Equivalent to setting the wind direction. Angle in degrees. Returns ------- None """ x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert, nr_hor=nr_hor) if a_phi is not None: phi_rad = self.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi) assert len(phi_rad) == nr_vert else: nr_vert = len(z) phi_rad = np.zeros((nr_vert,)) # add any yaw error on top of if wdir is not None: # because wdir cw positive, and phi veer ccw positive phi_rad -= (wdir*np.pi/180.0) u, v, w, xx, zz = self.decompose_veer(phi_rad, x, z) # scale the shear on top of that if shear_exp is not None: shear = self.shear_powerlaw(zz, z_h, shear_exp) uu = u*shear[:,np.newaxis] vv = v*shear[:,np.newaxis] ww = w*shear[:,np.newaxis] # and write to a file if fname is not None: self.write_user_defined_shear(fname, uu, vv, ww, xx, zz) def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20): """ Utility to create the coordinates of the wind field based on hub heigth and blade length. """ # take 15% extra space after the blade tip z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert) # along the horizontal, coordinates with 0 at the rotor center x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor) return x, z def shear_powerlaw(self, z, z_ref, a): profile = np.power(z/z_ref, a) # when a negative, make sure we return zero and not inf profile[np.isinf(profile)] = 0.0 return profile def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5): """ Modified Ekman veer profile, as defined by Mark C. Kelly in email on 10 October 2014 15:10 (RE: veer profile) .. math:: \\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi} e^{-\sqrt{z_H/h_{ME}}} \\frac{z-z_H}{\sqrt{z_H*h_{ME}}} \\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}} - \\frac{z-z_H}{4z_H} \\right) where: :math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}` and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter, and :math:`\\kappa = 0.41` as the von Karman constant, and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity. For on shore, :math:`h_{ME} \\approx 1000`, for off-shore, :math:`h_{ME} \\approx 500` :math:`a_{\\varphi} \\approx 0.5` Parameters ---------- :math:`a_{\\varphi} \\approx 0.5` parameter for the modified Ekman veer distribution. Values vary between -1.2 and 0.5. returns ------- phi_rad : ndarray veer angle in radians """ t1 = np.exp(-math.sqrt(z_h / h_ME)) t2 = (z - z_h) / math.sqrt(z_h * h_ME) t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) ) return a_phi * t1 * t2 * t3 def decompose_veer(self, phi_rad, x, z): """ Convert a veer angle into u, v, and w components, ready for the HAWC2 user defined veer input file. Paramters --------- phi_rad : ndarray veer angle in radians method : str, default=linear 'linear' for a linear veer, 'ekman_mod' for modified ekman method Returns ------- u, v, w, v_coord, w_coord """ nr_hor = len(x) nr_vert = len(z) assert len(phi_rad) == nr_vert tan_phi = np.tan(phi_rad) # convert veer angles to veer components in v, u. Make sure the # normalized wind speed remains 1! # u = sympy.Symbol('u') # v = sympy.Symbol('v') # tan_phi = sympy.Symbol('tan_phi') # eq1 = u**2.0 + v**2.0 - 1.0 # eq2 = (tan_phi*u/v) - 1.0 # sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True) # # proposed solution is: # u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi # v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0)) # # but that gives the sign switch wrong, simplify/rewrite to: u = np.sqrt(1.0/(tan_phi**2 + 1.0)) v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi # verify they are actually the same but the sign: # assert np.allclose(np.abs(u), np.abs(u2)) # assert np.allclose(np.abs(v), np.abs(v2)) u_full = u[:,np.newaxis] + np.zeros((3,))[np.newaxis,:] v_full = v[:,np.newaxis] + np.zeros((3,))[np.newaxis,:] w_full = np.zeros((nr_vert,nr_hor)) return u_full, v_full, w_full, x, z def load_user_defined_veer(self, fname): """ Load a user defined veer and shear file as used for HAWC2 Returns ------- u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg """ blok = 0 bloks = {} with open(fname) as f: for i, line in enumerate(f.readlines()): if line.strip()[0] == '#' and blok > 0: bloks[blok] = i blok += 1 elif line.strip()[0] == '#': continue elif blok == 0: items = line.split(' ') items = misc.remove_items(items, '') nr_hor, nr_vert = int(items[0]), int(items[1]) blok += 1 # nr_lines = i k = nr_hor + 4*nr_vert + 7 v_comp = np.genfromtxt(fname, skiprows=3, skip_footer=i-3-3-nr_vert) u_comp = np.genfromtxt(fname, skiprows=3+1+nr_vert, skip_footer=i-3-3-nr_vert*2) w_comp = np.genfromtxt(fname, skiprows=3+2+nr_vert*2, skip_footer=i-3-3-nr_vert*3) v_coord = np.genfromtxt(fname, skiprows=3+3+nr_vert*3, skip_footer=i-3-3-nr_vert*3-3) w_coord = np.genfromtxt(fname, skiprows=3+3+nr_vert*3+4, skip_footer=i-k) phi_deg = np.arctan(v_comp[:,0]/u_comp[:,0])*180.0/np.pi return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg def write_user_defined_shear(self, fname, u, v, w, v_coord, w_coord): """ """ nr_hor = len(v_coord) nr_vert = len(w_coord) try: assert u.shape == v.shape assert u.shape == w.shape assert u.shape[0] == nr_vert assert u.shape[1] == nr_hor except AssertionError: raise ValueError('u, v, w shapes should be consistent with ' 'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, ' 'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert)) # and create the input file with open(fname, 'w') as f: f.write('# User defined shear file\n') f.write('%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert)) h1 = 'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns' f.write('# v component, %s\n' % h1) np.savetxt(f, v, fmt='% 08.05f', delimiter=' ') f.write('# u component, %s\n' % h1) np.savetxt(f, u, fmt='% 08.05f', delimiter=' ') f.write('# w component, %s\n' % h1) np.savetxt(f, w, fmt='% 08.05f', delimiter=' ') h2 = '# v coordinates (along the horizontal, nr_hor, 0 rotor center)' f.write('%s\n' % h2) np.savetxt(f, v_coord.reshape((v_coord.size,1)), fmt='% 8.02f') h3 = '# w coordinates (zero is at ground level, height, nr_hor)' f.write('%s\n' % h3) np.savetxt(f, w_coord.reshape((w_coord.size,1)), fmt='% 8.02f') class WindProfiles: def __init__(self): pass def powerlaw(self, z, z_ref, a): profile = np.power(z/z_ref, a) # when a negative, make sure we return zero and not inf profile[np.isinf(profile)] = 0.0 return profile def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5): """ Modified Ekman veer profile, as defined by Mark C. Kelly in email on 10 October 2014 15:10 (RE: veer profile) .. math:: \\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi} e^{-\sqrt{z_H/h_{ME}}} \\frac{z-z_H}{\sqrt{z_H*h_{ME}}} \\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}} - \\frac{z-z_H}{4z_H} \\right) where: :math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}` and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter, and :math:`\\kappa = 0.41` as the von Karman constant, and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity. For on shore, :math:`h_{ME} \\approx 1000`, for off-shore, :math:`h_{ME} \\approx 500` :math:`a_{\\varphi} \\approx 0.5` Parameters ---------- :math:`a_{\\varphi} \\approx 0.5` parameter for the modified Ekman veer distribution. Values vary between -1.2 and 0.5. returns ------- phi_rad : ndarray veer angle in radians as function of height """ t1 = np.exp(-math.sqrt(z_h / h_ME)) t2 = (z - z_h) / math.sqrt(z_h * h_ME) t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) ) return a_phi * t1 * t2 * t3 class Turbulence: def __init__(self): pass def read_hawc2(self, fpath, shape): """ Read the HAWC2 turbulence format """ fid = open(fpath, 'rb') tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2]) turb = np.reshape(tmp, shape) return turb def read_bladed(self, fpath, basename): fid = open(fpath + basename + '.wnd', 'rb') R1 = struct.unpack('h', fid.read(2))[0] R2 = struct.unpack('h', fid.read(2))[0] turb = struct.unpack('i', fid.read(4))[0] lat = struct.unpack('f', fid.read(4))[0] rough = struct.unpack('f', fid.read(4))[0] refh = struct.unpack('f', fid.read(4))[0] longti = struct.unpack('f', fid.read(4))[0] latti = struct.unpack('f', fid.read(4))[0] vertti = struct.unpack('f', fid.read(4))[0] dv = struct.unpack('f', fid.read(4))[0] dw = struct.unpack('f', fid.read(4))[0] du = struct.unpack('f', fid.read(4))[0] halfalong = struct.unpack('i', fid.read(4))[0] mean_ws = struct.unpack('f', fid.read(4))[0] VertLongComp = struct.unpack('f', fid.read(4))[0] LatLongComp = struct.unpack('f', fid.read(4))[0] LongLongComp = struct.unpack('f', fid.read(4))[0] Int = struct.unpack('i', fid.read(4))[0] seed = struct.unpack('i', fid.read(4))[0] VertGpNum = struct.unpack('i', fid.read(4))[0] LatGpNum = struct.unpack('i', fid.read(4))[0] VertLatComp = struct.unpack('f', fid.read(4))[0] LatLatComp = struct.unpack('f', fid.read(4))[0] LongLatComp = struct.unpack('f', fid.read(4))[0] VertVertComp = struct.unpack('f', fid.read(4))[0] LatVertComp = struct.unpack('f', fid.read(4))[0] LongVertComp = struct.unpack('f', fid.read(4))[0] points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3) fid.close() return points def convert2bladed(self, fpath, basename, shape=(4096,32,32)): """ Convert turbulence box to BLADED format """ u = self.read_hawc2(fpath + basename + 'u.bin', shape) v = self.read_hawc2(fpath + basename + 'v.bin', shape) w = self.read_hawc2(fpath + basename + 'w.bin', shape) # mean velocity components at the center of the box v1, v2 = (shape[1]/2)-1, shape[1]/2 w1, w2 = (shape[2]/2)-1, shape[2]/2 ucent = (u[:,v1,w1] + u[:,v1,w2] + u[:,v2,w1] + u[:,v2,w2]) / 4.0 vcent = (v[:,v1,w1] + v[:,v1,w2] + v[:,v2,w1] + v[:,v2,w2]) / 4.0 wcent = (w[:,v1,w1] + w[:,v1,w2] + w[:,v2,w1] + w[:,v2,w2]) / 4.0 # FIXME: where is this range 351:7374 coming from?? The original script # considered a box of lenght 8192 umean = np.mean(ucent[351:7374]) vmean = np.mean(vcent[351:7374]) wmean = np.mean(wcent[351:7374]) ustd = np.std(ucent[351:7374]) vstd = np.std(vcent[351:7374]) wstd = np.std(wcent[351:7374]) # gives a slight different outcome, but that is that significant? # umean = np.mean(u[351:7374,15:17,15:17]) # vmean = np.mean(v[351:7374,15:17,15:17]) # wmean = np.mean(w[351:7374,15:17,15:17]) # this is wrong since we want the std on the center point # ustd = np.std(u[351:7374,15:17,15:17]) # vstd = np.std(v[351:7374,15:17,15:17]) # wstd = np.std(w[351:7374,15:17,15:17]) iu = np.zeros(shape) iv = np.zeros(shape) iw = np.zeros(shape) iu[:,:,:] = (u - umean)/ustd*1000.0 iv[:,:,:] = (v - vmean)/vstd*1000.0 iw[:,:,:] = (w - wmean)/wstd*1000.0 # because MATLAB and Octave do a round when casting from float to int, # and Python does a floor, we have to round first np.around(iu, decimals=0, out=iu) np.around(iv, decimals=0, out=iv) np.around(iw, decimals=0, out=iw) return iu.astype(np.int16), iv.astype(np.int16), iw.astype(np.int16) def write_bladed(self, fpath, basename, shape): """ Write turbulence BLADED file """ # TODO: get these parameters from a HAWC2 input file seed = 6 mean_ws = 11.4 turb = 3 R1 = -99 R2 = 4 du = 0.974121094 dv = 4.6875 dw = 4.6875 longti = 14 latti = 9.8 vertti = 7 iu, iv, iw = self.convert2bladed(fpath, basename, shape=shape) fid = open(fpath + basename + '.wnd', 'wb') fid.write(struct.pack('h', R1)) # R1 fid.write(struct.pack('h', R2)) # R2 fid.write(struct.pack('i', turb)) # Turb fid.write(struct.pack('f', 999)) # Lat fid.write(struct.pack('f', 999)) # rough fid.write(struct.pack('f', 999)) # refh fid.write(struct.pack('f', longti)) # LongTi fid.write(struct.pack('f', latti)) # LatTi fid.write(struct.pack('f', vertti)) # VertTi fid.write(struct.pack('f', dv)) # VertGpSpace fid.write(struct.pack('f', dw)) # LatGpSpace fid.write(struct.pack('f', du)) # LongGpSpace fid.write(struct.pack('i', shape[0]/2)) # HalfAlong fid.write(struct.pack('f', mean_ws)) # meanWS fid.write(struct.pack('f', 999.)) # VertLongComp fid.write(struct.pack('f', 999.)) # LatLongComp fid.write(struct.pack('f', 999.)) # LongLongComp fid.write(struct.pack('i', 999)) # Int fid.write(struct.pack('i', seed)) # Seed fid.write(struct.pack('i', shape[1])) # VertGpNum fid.write(struct.pack('i', shape[2])) # LatGpNum fid.write(struct.pack('f', 999)) # VertLatComp fid.write(struct.pack('f', 999)) # LatLatComp fid.write(struct.pack('f', 999)) # LongLatComp fid.write(struct.pack('f', 999)) # VertVertComp fid.write(struct.pack('f', 999)) # LatVertComp fid.write(struct.pack('f', 999)) # LongVertComp # fid.flush() # bladed2 = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16) # for i in xrange(shape[0]): # for k in xrange(shape[1]): # for j in xrange(shape[2]): # fid.write(struct.pack('i', iu[i, shape[1]-j-1, k])) # fid.write(struct.pack('i', iv[i, shape[1]-j-1, k])) # fid.write(struct.pack('i', iw[i, shape[1]-j-1, k])) # bladed2[i,k,j,0] = iu[i, shape[1]-j-1, k] # bladed2[i,k,j,1] = iv[i, shape[1]-j-1, k] # bladed2[i,k,j,2] = iw[i, shape[1]-j-1, k] # re-arrange array for bladed format bladed = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16) bladed[:,:,:,0] = iu[:,::-1,:] bladed[:,:,:,1] = iv[:,::-1,:] bladed[:,:,:,2] = iw[:,::-1,:] bladed_swap_view = bladed.swapaxes(1,2) bladed_swap_view.tofile(fid, format='%int16') fid.flush() fid.close() class Bladed(object): def __init__(self): """ Some BLADED results I have seen are just weird text files. Convert them to a more convienent format. path/to/file channel 1 description col a name/unit col b name/unit a0 b0 a1 b1 ... path/to/file channel 2 description col a name/unit col b name/unit ... """ pass def infer_format(self, lines): """ Figure out how many channels and time steps are included """ count = 1 for line in lines[1:]: if line == lines[0]: break count += 1 iters = count - 3 chans = len(lines) / (iters + 3) return int(chans), int(iters) def read(self, fname, chans=None, iters=None, enc='cp1252'): """ Parameters ---------- fname : str chans : int, default=None iters : int, default=None enc : str, default='cp1252' character encoding of the source file. Usually BLADED is used on windows so Western-European windows encoding is a safe bet. """ with codecs.open(fname, 'r', enc) as f: lines = f.readlines() nrl = len(lines) if chans is None and iters is None: chans, iters = self.infer_format(lines) if iters is not None: chans = int(nrl / (iters + 3)) if chans is not None: iters = int((nrl / chans) - 3) # file_head = [ [k[:-2],0] for k in lines[0:nrl:iters+3] ] # chan_head = [ [k[:-2],0] for k in lines[1:nrl:iters+3] ] # cols_head = [ k.split('\t')[:2] for k in lines[2:nrl:iters+3] ] data = {} for k in range(chans): # take the column header from the 3 comment line, but head = lines[2 + (3 + iters)*k][:-2].split('\t')[1].encode('utf-8') i0 = 3 + (3 + iters)*k i1 = i0 + iters data[head] = np.array([k[:-2].split('\t')[1] for k in lines[i0:i1:1]]) data[head] = data[head].astype(np.float64) time = np.array([k[:-2].split('\t')[0] for k in lines[i0:i1:1]]) df = pd.DataFrame(data, index=time.astype(np.float64)) df.index.name = lines[0][:-2] return df class Tests(unittest.TestCase): def setUp(self): pass def print_test_info(self): pass def test_reshaped(self): """ Make sure we correctly reshape the array instead of the manual index reassignments """ fpath = 'data/turb_s100_3.00w.bin' fid = open(fpath, 'rb') turb = np.fromfile(fid, 'float32', 32*32*8192) turb.shape fid.close() u = np.zeros((8192,32,32)) for i in range(8192): for j in range(32): for k in range(32): u[i,j,k] = turb[ i*1024 + j*32 + k] u2 = np.reshape(turb, (8192, 32, 32)) self.assertTrue(np.alltrue(np.equal(u, u2))) def test_headers(self): fpath = 'data/' basename = 'turb_s100_3.00_refoctave_header' fid = open(fpath + basename + '.wnd', 'rb') R1 = struct.unpack("h",fid.read(2))[0] R2 = struct.unpack("h",fid.read(2))[0] turb = struct.unpack("i",fid.read(4))[0] lat = struct.unpack("f",fid.read(4))[0] # last line fid.seek(100) LongVertComp = struct.unpack("f",fid.read(4))[0] fid.close() basename = 'turb_s100_3.00_python_header' fid = open(fpath + basename + '.wnd', 'rb') R1_p = struct.unpack("h",fid.read(2))[0] R2_p = struct.unpack("h",fid.read(2))[0] turb_p = struct.unpack("i",fid.read(4))[0] lat_p = struct.unpack("f",fid.read(4))[0] # last line fid.seek(100) LongVertComp_p = struct.unpack("f",fid.read(4))[0] fid.close() self.assertEqual(R1, R1_p) self.assertEqual(R2, R2_p) self.assertEqual(turb, turb_p) self.assertEqual(lat, lat_p) self.assertEqual(LongVertComp, LongVertComp_p) def test_write_bladed(self): fpath = 'data/' turb = Turbulence() # write with Python basename = 'turb_s100_3.00' turb.write_bladed(fpath, basename, shape=(8192,32,32)) python = turb.read_bladed(fpath, basename) # load octave basename = 'turb_s100_3.00_refoctave' octave = turb.read_bladed(fpath, basename) # float versions of octave basename = 'turb_s100_3.00_refoctave_float' fid = open(fpath + basename + '.wnd', 'rb') octave32 = np.fromfile(fid, 'float32', 8192*32*32*3) # find the differences nr_diff = (python-octave).__ne__(0).sum() print(nr_diff) print(nr_diff/len(python)) self.assertTrue(np.alltrue(python == octave)) def test_turbdata(self): shape = (8192,32,32) fpath = 'data/' basename = 'turb_s100_3.00_refoctave' fid = open(fpath + basename + '.wnd', 'rb') # check the last element of the header fid.seek(100) print(struct.unpack("f",fid.read(4))[0]) # save in a list using struct items = (os.path.getsize(fpath + basename + '.wnd')-104)/2 data_list = [struct.unpack("h",fid.read(2))[0] for k in range(items)] fid.seek(104) data_16 = np.fromfile(fid, 'int16', shape[0]*shape[1]*shape[2]*3) fid.seek(104) data_8 = np.fromfile(fid, 'int8', shape[0]*shape[1]*shape[2]*3) self.assertTrue(np.alltrue( data_16 == data_list )) self.assertFalse(np.alltrue( data_8 == data_list )) def test_compare_octave(self): """ Compare the results from the original script run via octave """ turb = Turbulence() iu, iv, iw = turb.convert2bladed('data/', 'turb_s100_3.00', shape=(8192,32,32)) res = sio.loadmat('data/workspace.mat') # increase tolerances, values have a range up to 5000-10000 # and these values will be written to an int16 format for BLADED! self.assertTrue(np.allclose(res['iu'], iu, rtol=1e-03, atol=1e-2)) self.assertTrue(np.allclose(res['iv'], iv, rtol=1e-03, atol=1e-2)) self.assertTrue(np.allclose(res['iw'], iw, rtol=1e-03, atol=1e-2)) def test_allindices(self): """ Verify that all indices are called """ fpath = 'data/turb_s100_3.00w.bin' fid = open(fpath, 'rb') turb = np.fromfile(fid, 'float32', 32*32*8192) turb.shape fid.close() check = [] for i in range(8192): for j in range(32): for k in range(32): check.append(i*1024 + j*32 + k) qq = np.array(check) qdiff = np.diff(qq) self.assertTrue(np.alltrue(np.equal(qdiff, np.ones(qdiff.shape)))) if __name__ == '__main__': unittest.main()