''' Created on 24/06/2016 @author: MMPE ''' import numpy as np import unittest from wetb.utils.geometry import rpm2rads from _collections import deque from tables.tests.test_index_backcompat import Indexes2_0TestCase from wetb.signal.filters._differentiation import differentiation def power_mean(power, trigger_indexes, I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) : """Calculate the density normalized mean power, taking acceleration of the rotor into account Parameters --------- Power : array_like Power [W] trigger_indexes : array_like Trigger indexes I : float Rotor inerti [kg m^2] rotor_speed : array_like Rotor speed [rad/s] time : array_like time [s] air_density : int, float or array_like, optional Air density. rotor_speed_mean_samples : int To reduce the effect of noise, the mean of a number of rotor speed samples can be used Returns ------- mean power including power used to (de)accelerate rotor Examples: --------- turbine_power_mean = lambda power, triggers : power_mean(power, triggers, I=2.5E7, rot_speed, time, rho) trigger_indexes = time_trigger(time,30) wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean}) """ if rotor_speed_mean_samples == 1: rs1 = rotor_speed[trigger_indexes[:-1]] rs2 = rotor_speed[trigger_indexes[1:] - 1] else: rs = np.array([rotor_speed[max(i - rotor_speed_mean_samples, 0):i - 1 + rotor_speed_mean_samples].mean() for i in trigger_indexes]) rs1 = rs[:-1] rs2 = rs[1:] power = np.array([np.nanmean(power[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) if isinstance(air_density, (int, float)): if air_density != 1.225: power = power / air_density * 1.225 else: air_density = np.array([np.nanmean(air_density[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) power = power / air_density * 1.225 return power + 1 / 2 * I * (rs2 ** 2 - rs1 ** 2) / (time[trigger_indexes[1:] - 1] - time[trigger_indexes[:-1]]) def power_mean_func_kW(I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) : """Return a power mean function [kW] used to Calculate the density normalized mean power, taking acceleration of the rotor into account Parameters --------- I : float Rotor inerti [kg m^2] rotor_speed : array_like Rotor speed [rad/s] time : array_like time [s] air_density : int, float or array_like, optional Air density. rotor_speed_mean_samples : int To reduce the effect of noise, the mean of a number of rotor speed samples can be used Returns ------- mean power function Examples: --------- turbine_power_mean = power_mean_func_kW(power, triggers, I=2.5E7, rot_speed, time, rho) trigger_indexes = time_trigger(time,30) wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean}) """ def mean_power(power, trigger_indexes): return power_mean(power * 1000, trigger_indexes, I, rotor_speed, time , air_density, rotor_speed_mean_samples) / 1000 return mean_power def subset_mean(data, trigger_indexes, mean_func={}): if isinstance(data, list): data = np.array(data).T if len(data.shape)==1: no_sensors = 1 else: no_sensors = data.shape[1] if isinstance(trigger_indexes[0], tuple): triggers = np.array(trigger_indexes) steps = np.diff(triggers[:, 0]) lengths = np.diff(triggers)[:, 0] if np.all(steps == steps[0]) and np.all(lengths == lengths[0]): subset_mean = np.mean(np.r_[data.reshape(data.shape[0],no_sensors),np.empty((steps[0],no_sensors))+np.nan][triggers[0][0]:triggers.shape[0] * steps[0] + triggers[0][0]].reshape(triggers.shape[0], steps[0], no_sensors)[:, :lengths[0]], 1) else: subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in trigger_indexes]) for index, func in mean_func.items(): att = data[:, index] subset_mean[:, index] = func(att, trigger_indexes) else: steps = np.diff(trigger_indexes) if np.all(steps == steps[0]): #equal distance subset_mean = np.mean(data[trigger_indexes[0]:trigger_indexes[-1]].reshape([ len(trigger_indexes) - 1, steps[0], data.shape[1]]), 1) else: subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) for index, func in mean_func.items(): att = data[:, index] subset_mean[:, index] = func(att, trigger_indexes) if len(data.shape)==1 and len(subset_mean.shape)==2: return subset_mean[:,0] else: return subset_mean def cycle_trigger(values, trigger_value=None, step=1, ascending=True, tolerance=0): values = np.array(values) if trigger_value is None: r = values.max() - values.min() values = (values[:] - r / 2) % r trigger_value = r / 2 if ascending: return np.where((values[1:] > trigger_value + tolerance) & (values[:-1] <= trigger_value - tolerance))[0][::step] else: return np.where((values[1:] < trigger_value - tolerance) & (values[:-1] >= trigger_value + tolerance))[0][::step] def revolution_trigger(rotor_position, sample_frq, rotor_speed, max_rev_diff=1, plt=None): """Returns one index per revolution (minimum rotor position) Parameters ---------- rotor_position : array_like Rotor position [deg] (0-360) sample_frq : int or float Sample frequency [Hz] rotor_speed : array_like Rotor speed [RPM] Returns ------- nd_array : Array of indexes """ if isinstance(rotor_speed, (float, int)): rotor_speed = np.ones_like(rotor_position)*rotor_speed deg_per_sample = rotor_speed*360/60/sample_frq thresshold = deg_per_sample.max()*3 drp = (np.diff(rotor_position)+thresshold)%360-thresshold rp = rotor_position rp = np.array(rotor_position).copy()%360 #filter degree increase > thresshold rp[np.r_[False, np.diff(rp)>thresshold]] = 180 upper_indexes = np.where((rp[:-1]>(360-thresshold))&(rp[1:]<(360-thresshold)))[0] lower_indexes = np.where((rp[:-1]>thresshold)&(rp[1:]<thresshold))[0] +1 if plt: plt.plot(rp) plt.plot(lower_indexes, rp[lower_indexes],'.') plt.plot(upper_indexes, rp[upper_indexes],'.') # Best lower is the first lower after upper best_lower = lower_indexes[np.searchsorted(lower_indexes, upper_indexes)] upper2lower = best_lower - upper_indexes trigger_indexes = best_lower[upper2lower<upper2lower.mean()*2].tolist() if len(trigger_indexes)>1: rpm_rs = np.array([rev.mean() for rev in np.split(rotor_speed, trigger_indexes)[1:-1]]) rpm_i = 1/np.diff(trigger_indexes)*60*sample_frq spr_rs = np.array([rev.mean() for rev in np.split(1/rotor_speed*60*sample_frq, trigger_indexes)[1:-1]]) spr_i = np.diff(trigger_indexes) while np.any(spr_rs>spr_i*1.9): i = np.where(spr_rs>spr_i*1.9)[0][0] if np.abs(spr_i[i-1] + spr_i[i] - spr_rs[i])< np.abs(spr_i[i] + spr_i[i+1] - spr_rs[i]): del trigger_indexes[i] else: del trigger_indexes[i+1] spr_i = np.diff(trigger_indexes) spr_rs = np.array([rev.mean() for rev in np.split(1/rotor_speed*60*sample_frq, trigger_indexes)[1:-1]]) # if a revolution is too long add trigger if np.any(rpm_rs>rpm_i*2.1): # >1 missing triggers raise NotImplementedError trigger_indexes.extend([np.mean(trigger_indexes[i:i+2]) for i in np.where(rpm_rs>rpm_i*1.9)[0]]) trigger_indexes = np.sort(trigger_indexes).astype(np.int) i1,i2 = trigger_indexes[0], trigger_indexes[-1] nround_rotor_speed = np.nansum(rotor_speed[i1:i2]/60/sample_frq) #mod = [v for v in [5,10,30,60,90] if v>thresshold][0] nround_rotor_position = len(trigger_indexes)-1 #np.nansum(np.diff(rotor_position[i1:i2])%mod)/360 if max_rev_diff is not None: diff_pct = abs(nround_rotor_position-nround_rotor_speed)/nround_rotor_position*100 assert diff_pct<max_rev_diff, "No of revolution mismatch: rotor_position (%d), rotor_speed (%.1f), diff %.1f%%"%(nround_rotor_position, nround_rotor_speed, diff_pct) return trigger_indexes def revolution_trigger_old(values, rpm_dt=None, dmin=5, dmax=10, ): """Return indexes where values are > max(values)-dmin and decreases more than dmax If RPM and time step is provided, triggers steps < time of 1rpm is removed Parameters --------- values : array_like Position signal (e.g. rotor position) rpm_dt : tuple(array_like, float), optional - rpm : RPM signal - dt : time step between samples dmin : int or float, optional Minimum normal position increase between samples dmax : float or int, optional Maximum normal position increase between samples Returns ------- trigger indexes [i1,i2,...,in] if rpm_dt is not provided [(start1,stop1),(start2,stop2),...,(startn, stopn)] if rpm_dt is provided """ values = np.array(values) indexes = np.where((np.diff(values)<-dmax)&(values[:-1]>values.max()-dmax))[0] if rpm_dt is None: return indexes else: index_pairs = [] rpm, dt = rpm_dt d_deg = rpm *360/60*dt cum_d_deg = np.cumsum(d_deg) lbound, ubound = values.max()-dmax, values.max()+dmax index_pairs = [(i1,i2) for i1,i2, deg in zip(indexes[:-1], indexes[1:], cum_d_deg[indexes[1:]-1]-cum_d_deg[indexes[:-1]]) if deg > lbound and deg<ubound] return index_pairs def time_trigger(time, step, start=None, stop=None): if start is None: start = time[0] decimals = int(np.ceil(np.log10(1 / np.nanmin(np.diff(time))))) time = np.round(time - start, decimals) steps = np.round(np.diff(time), decimals) if np.sum(steps == steps[0])/len(time)>.99: #np.all(steps == steps[0]): # equal time step time = np.r_[time, time[-1] + max(set(steps), key=list(steps).count)] if stop is None: stop = time[~np.isnan(time)][-1] else: stop -= start epsilon = 10 ** -(decimals + 2) return np.where(((time % step < epsilon) | (time % step > step - epsilon)) & (time >= 0) & (time <= stop))[0] def non_nan_index_trigger(sensor, step): trigger = [] i = 0 nan_indexes = deque(np.where(np.isnan(sensor))[0].tolist() + [len(sensor)]) while i + step <= sensor.shape[0]: if i+step<=nan_indexes[0]: trigger.append((i,i+step)) i+=step else: i = nan_indexes.popleft()+1 return trigger