# -*- coding: utf-8 -*- """ Created on Mon Nov 2 15:23:15 2015 @author: dave """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from builtins import range from builtins import zip from builtins import dict from builtins import str from builtins import int from future import standard_library standard_library.install_aliases() from builtins import object import os import numpy as np #import scipy.interpolate as interpolate import pandas as pd from matplotlib import pyplot as plt from wetb.prepost import Simulations as sim from wetb.prepost import dlcdefs from wetb.prepost import hawcstab2 as hs2 from wetb.prepost import mplutils class ConfigBase(object): def __init__(self): pass def set_master_defaults(self): """Create a set of default master tags that are required for proper compatibility with Simulations.py """ mt = {} # ===================================================================== # required tags and their defaults # ===================================================================== mt['[dt_sim]'] = 0.01 mt['[hawc2_exe]'] = 'hawc2-latest' # convergence_limits 0.001 0.005 0.005 ; # critical one, risidual on the forces: 0.0001 = 1e-4 mt['[epsresq]'] = '1.0' # default=10.0 # increment residual mt['[epsresd]'] = '0.5' # default= 1.0 # constraint equation residual mt['[epsresg]'] = '1e-8' # default= 1e-7 # folder names for the saved results, htc, data, zip files # Following dirs are relative to the model_dir_server and they specify # the location of where the results, logfiles, animation files that where # run on the server should be copied to after the simulation has finished. # on the node, it will try to copy the turbulence files from these dirs mt['[animation_dir]'] = 'animation/' mt['[control_dir]'] = 'control/' mt['[data_dir]'] = 'data/' mt['[eigen_analysis]'] = False mt['[eigenfreq_dir]'] = False mt['[htc_dir]'] = 'htc/' mt['[log_dir]'] = 'logfiles/' mt['[meander_dir]'] = False mt['[opt_dir]'] = False mt['[pbs_out_dir]'] = 'pbs_out/' mt['[res_dir]'] = 'res/' mt['[iter_dir]'] = 'iter/' mt['[turb_dir]'] = 'turb/' mt['[turb_db_dir]'] = '../turb/' mt['[wake_dir]'] = False mt['[hydro_dir]'] = False mt['[mooring_dir]'] = False mt['[externalforce]'] = False mt['[Case folder]'] = 'NoCaseFolder' # zip_root_files only is used when copy to run_dir and zip creation, define # in the HtcMaster object mt['[zip_root_files]'] = [] # only active on PBS level, so files have to be present in the run_dir mt['[copyback_files]'] = [] # copyback_resultfile mt['[copyback_frename]'] = [] # copyback_resultrename mt['[copyto_files]'] = [] # copyto_inputfile mt['[copyto_generic]'] = [] # copyto_input_required_defaultname # ===================================================================== # required tags by HtcMaster and PBS in order to function properly # ===================================================================== # the express queue ('#PBS -q xpresq') has a maximum walltime of 1h mt['[pbs_queue_command]'] = '#PBS -q workq' # walltime should have following format: hh:mm:ss mt['[walltime]'] = '04:00:00' mt['[auto_walltime]'] = False return mt def opt_tags_h2_eigenanalysis(self, basename): """Return opt_tags suitable for a standstill HAWC2 eigen analysis. """ opt_tags = [self.opt_h2.copy()] opt_tags[0].update(self.eigenan.copy()) opt_tags[0]['[Case id.]'] = '%s_hawc2_eigenanalysis' % basename opt_tags[0]['[blade_damp_x]'] = 0.0 opt_tags[0]['[blade_damp_y]'] = 0.0 opt_tags[0]['[blade_damp_z]'] = 0.0 opt_tags[0]['[blade_nbodies]'] = 1 opt_tags[0]['[Windspeed]'] = 0.0 opt_tags[0]['[initspeed_rotor_rads]'] = 0.0 opt_tags[0]['[operational_data]'] = 'case-turbine2-empty.opt' return opt_tags def opt_tags_hs_structure_body_eigen(self, basename): """Return opt_tags suitable for a standstill HAWCStab2 body eigen analysis, at 0 RPM. """ opt_tags = [self.opt_hs2.copy()] opt_tags[0]['[Case id.]'] = '%s_hawc2_eigenanalysis' % basename opt_tags[0]['[blade_damp_x]'] = 0.0 opt_tags[0]['[blade_damp_y]'] = 0.0 opt_tags[0]['[blade_damp_z]'] = 0.0 opt_tags[0]['[blade_nbodies]'] = 1 opt_tags[0]['[Windspeed]'] = 0.0 opt_tags[0]['[initspeed_rotor_rads]'] = 0.0 opt_tags[0]['[fixspeed_rotor_rads]'] = 0.0 opt_tags[0]['[operational_data]'] = 'case-turbine2-empty.opt' return opt_tags def opt_tags_hs2(self, basename): opt_tags = [self.opt_hs2.copy()] opt_tags[0]['[Case id.]'] = '%s_hawcstab2' % basename return opt_tags def set_hs2opdata(self, master, basename): """Load the HS2 operational data file and create opt_tags for HAWC2 cases. Returns ------- opt_tags : list of dicts """ fpath = os.path.join(master.tags['[data_dir]'], master.tags['[operational_data]']) hs2_res = hs2.results() hs2_res.load_operation(fpath) omegas = hs2_res.operation.rotorspeed_rpm.values*np.pi/30.0 winds = hs2_res.operation.windspeed.values pitchs = -1.0*hs2_res.operation.pitch_deg.values return self.set_opdata(winds, pitchs, omegas, basename=basename) def set_opdata(self, winds, pitchs, omegas, basename=None): """Return opt_tags for HAWC2 based on an HAWCStab2 operational data file. Parameters ---------- winds : ndarray(n) wind speed for given operating point [m/s] pitchs : ndarray(n) pitch angle at given operating point [deg] omegas : ndarray(n) rotor speed at given operating point [rad/s] basename : str, default=None If not None, the [Case id.] tag is composed out of the basename, wind speed, pitch angle and rotor speed. If set to None, the [Case id.] tag is not set. Returns ------- opt_tags : list of dicts """ # the HAWC2 cases opt_tags = [] for wind, pitch, omega in zip(winds, pitchs, omegas): opt_dict = {} opt_dict.update(self.opt_h2.copy()) opt_dict.update(self.fix_op.copy()) rpl = (basename, wind, pitch, omega) if basename is not None: tmp = '%s_%02.0fms_%04.01fdeg_%04.02frads_hawc2' % rpl opt_dict['[Case id.]'] = tmp opt_dict['[Windspeed]'] = wind opt_dict['[blade_pitch_deg]'] = pitch opt_dict['[fixspeed_rotor_rads]'] = omega opt_dict['[initspeed_rotor_rads]'] = omega # opt_dict['[t0]'] = int(2000.0/opt_dict['[Windspeed]']) # or 2000? # opt_dict['[time stop]'] = opt_dict['[t0]']+100 # opt_dict['[time_stop]'] = opt_dict['[t0]']+100 opt_tags.append(opt_dict.copy()) return opt_tags class Sims(object): def __init__(self, sim_id, P_MASTERFILE, MASTERFILE, P_SOURCE, P_RUN, PROJECT, POST_DIR, master_tags_default): """ Create HtcMaster() object ========================= the HtcMaster contains all the settings to start creating htc files. It holds the master file, server paths and more. The master.tags dictionary holds those tags who do not vary for different cases. Variable tags, i.e. tags who are a function of other variables or other tags, are defined in the function variable_tag_func(). It is considered as good practice to define the default values for all the variable tags in the master_tags Parameters ---------- sim_id : str P_MASTERFILE : str MASTERFILE : str P_SOURCE : str P_RUN : str PROJECT : str POST_DIR : str master_tags_default : dict Dictionary with the default master tag values. Should be created by the turbine specific class Configurations.set_master_defaults() Members ------- Returns ------- """ self.sim_id = sim_id self.P_MASTERFILE = P_MASTERFILE self.MASTERFILE = MASTERFILE self.P_SOURCE = P_SOURCE self.P_RUN = P_RUN self.PROJECT = PROJECT self.POST_DIR = POST_DIR # TODO: write a lot of logical tests for the tags!! # TODO: tests to check if the dirs are setup properly (ending slahses) # FIXME: some tags are still variable! Only static tags here that do # not depent on any other variable that can change self.master = sim.HtcMaster() self.master.tags.update(master_tags_default) def _var_tag_func(self, master, case_id_short=False): """ Function which updates HtcMaster.tags and returns an HtcMaster object Only use lower case characters for case_id since a hawc2 result and logfile are always in lower case characters. Simulations.prepare_launch will force the value of the tags as defined in master.output_dirs to lower case. BE CAREFULL: if you change a master tag that is used to dynamically calculate an other tag, that change will be propageted over all cases, for example: master.tags['tag1'] *= master.tags[tag2]*master.tags[tag3'] it will accumlate over each new case. After 20 cases master.tags['tag1'] = (master.tags[tag2]*master.tags[tag3'])^20 which is not wanted, you should do master.tags['tag1'] = tag1_base*master.tags[tag2]*master.tags[tag3'] """ mt = master.tags dlc_case = mt['[Case folder]'] mt['[data_dir]'] = 'data/' mt['[res_dir]'] = 'res/%s/' % dlc_case mt['[log_dir]'] = 'logfiles/%s/' % dlc_case mt['[htc_dir]'] = 'htc/%s/' % dlc_case mt['[case_id]'] = mt['[Case id.]'] mt['[DLC]'] = dlc_case mt['[pbs_out_dir]'] = 'pbs_out/%s/' % dlc_case mt['[pbs_in_dir]'] = 'pbs_in/%s/' % dlc_case mt['[iter_dir]'] = 'iter/%s/' % dlc_case if mt['[eigen_analysis]']: rpl = os.path.join(dlc_case, mt['[Case id.]']) mt['[eigenfreq_dir]'] = 'res_eigen/%s/' % rpl # for HAWCStab2 certain things have to be done differently if mt['[hs2]']: mt['[htc_dir]'] = '' mt['[t0]'] = 0 mt['[time stop]'] = 1 mt['[hawc2]'] = False mt['[output]'] = False mt['[copyback_files]'] = ['./*.ind', './*.pwr', './*.log', './*.cmb', './*.bea'] mt['[copyback_frename]'] = [mt['[res_dir]'], mt['[res_dir]'], mt['[log_dir]'], mt['[res_dir]'], mt['[res_dir]']] if mt['[hs2_bladedeform_switch]']: mt['[hs2_bladedeform]'] = 'bladedeform' else: mt['[hs2_bladedeform]'] = 'nobladedeform' if int(mt['[tip_loss]']) == 1: mt['[hs2_tipcorrect]'] = 'tipcorrect' else: mt['[hs2_tipcorrect]'] = 'notipcorrect' if int(mt['[Induction]']) == 1: mt['[hs2_induction]'] = 'induction' else: mt['[hs2_induction]'] = 'noinduction' if mt['[hs2_gradients_switch]']: mt['[hs2_gradients]'] = 'gradients' else: mt['[hs2_gradients]'] = 'nogradients' mt['[windspeed]'] = mt['[Windspeed]'] mt['[time_stop]'] = mt['[time stop]'] mt['[duration]'] = str(float(mt['[time_stop]']) - float(mt['[t0]'])) return master def _set_path_auto_config(self, verbose=True): """ auto configure directories: assume you are running in the root of the relevant HAWC2 model and assume we are in a simulation case of a certain turbine/project """ (self.P_RUN, self.P_SOURCE, self.PROJECT, self.sim_id, self.P_MASTERFILE, self.MASTERFILE, self.POST_DIR) = dlcdefs.configure_dirs(verbose=verbose) def _set_path_config(self, runmethod='here'): """ Set the path configuration into the tags """ self.runmethod = runmethod if runmethod == 'here': self._set_path_auto_config() elif runmethod in ['local', 'local-script', 'none', 'local-ram']: self.p_root = '/home/dave/SimResults/h2_vs_hs2/' elif runmethod == 'windows-script': self.p_root = '/mnt/D16731/dave/Documents/_SimResults' elif runmethod == 'gorm': self.p_root = '/mnt/hawc2sim/h2_vs_hs2' elif runmethod == 'jess': self.p_root = '/mnt/hawc2sim/h2_vs_hs2' else: msg='unsupported runmethod, options: none, local, gorm or opt' raise ValueError(msg) if not runmethod == 'here': self.P_RUN = os.path.join(self.p_root, self.PROJECT, self.sim_id) self.master.tags['[master_htc_file]'] = self.MASTERFILE self.master.tags['[master_htc_dir]'] = self.P_MASTERFILE # directory to data, htc, SOURCE DIR if self.P_SOURCE[-1] == os.sep: self.master.tags['[model_dir_local]'] = self.P_SOURCE else: self.master.tags['[model_dir_local]'] = self.P_SOURCE + os.sep if self.P_RUN[-1] == os.sep: self.master.tags['[run_dir]'] = self.P_RUN else: self.master.tags['[run_dir]'] = self.P_RUN + os.sep self.master.tags['[post_dir]'] = self.POST_DIR self.master.tags['[sim_id]'] = self.sim_id # set the model_zip tag to include the sim_id rpl = (self.PROJECT, self.master.tags['[sim_id]']) self.master.tags['[model_zip]'] = '%s_%s.zip' % rpl def get_dlc_casedefs(self): """ Create iter_dict and opt_tags based on spreadsheets """ iter_dict = dict() iter_dict['[empty]'] = [False] # see if a htc/DLCs dir exists dlcs_dir = os.path.join(self.P_SOURCE, 'htc', 'DLCs') if os.path.exists(dlcs_dir): opt_tags = dlcdefs.excel_stabcon(dlcs_dir) else: opt_tags = dlcdefs.excel_stabcon(os.path.join(self.P_SOURCE, 'htc')) if len(opt_tags) < 1: raise ValueError('There are is not a single case defined. Make sure ' 'the DLC spreadsheets are configured properly.') # add all the root files, except anything with *.zip f_ziproot = [] for (dirpath, dirnames, fnames) in os.walk(self.P_SOURCE): # remove all zip files for i, fname in enumerate(fnames): if fname.endswith('.zip'): fnames.pop(i) f_ziproot.extend(fnames) break # and add those files for opt in opt_tags: opt['[zip_root_files]'] = f_ziproot self.master.output_dirs.extend('[Case folder]') self.master.output_dirs.extend('[Case id.]') return iter_dict, opt_tags def create_inputs(self, iter_dict, opt_tags): sim.prepare_launch(iter_dict, opt_tags, self.master, self._var_tag_func, write_htc=True, runmethod=self.runmethod, verbose=False, copyback_turb=False, msg='', update_cases=False, ignore_non_unique=False, run_only_new=False, pbs_fname_appendix=False, short_job_names=False) def get_control_tuning(self, fpath): """ Read a HAWCStab2 controller tuning file and return as tags """ tuning = hs2.hs2_control_tuning() tuning.read_parameters(fpath) tune_tags = {} tune_tags['[pi_gen_reg1.K]'] = tuning.pi_gen_reg1.K tune_tags['[pi_gen_reg2.I]'] = tuning.pi_gen_reg2.I tune_tags['[pi_gen_reg2.Kp]'] = tuning.pi_gen_reg2.Kp tune_tags['[pi_gen_reg2.Ki]'] = tuning.pi_gen_reg2.Ki tune_tags['[pi_pitch_reg3.Kp]'] = tuning.pi_pitch_reg3.Kp tune_tags['[pi_pitch_reg3.Ki]'] = tuning.pi_pitch_reg3.Ki tune_tags['[pi_pitch_reg3.K1]'] = tuning.pi_pitch_reg3.K1 tune_tags['[pi_pitch_reg3.K2]'] = tuning.pi_pitch_reg3.K2 tune_tags['[aero_damp.Kp2]'] = tuning.aero_damp.Kp2 tune_tags['[aero_damp.Ko1]'] = tuning.aero_damp.Ko1 tune_tags['[aero_damp.Ko2]'] = tuning.aero_damp.Ko2 return tune_tags def post_processing(self, statistics=True, resdir=None, calc_mech_power=False): """ Parameters ---------- resdir : str, default=None Defaults to reading the results from the [run_dir] tag. Force to any other directory using this variable. You can also use the presets as defined for runmethod in _set_path_config. """ post_dir = self.POST_DIR # ========================================================================= # check logfiles, results files, pbs output files # logfile analysis is written to a csv file in logfiles directory # ========================================================================= # load the file saved in post_dir cc = sim.Cases(post_dir, self.sim_id, rem_failed=False) if resdir is None: # we keep the run_dir as defined during launch run_root = None elif resdir in ['local', 'local-script', 'none', 'local-ram']: run_root = '/home/dave/SimResults' elif resdir == 'windows-script': run_root = '/mnt/D16731/dave/Documents/_SimResults' elif resdir == 'gorm': run_root = '/mnt/hawc2sim/h2_vs_hs2' elif resdir == 'jess': run_root = '/mnt/hawc2sim/h2_vs_hs2' else: run_root = None cc.change_results_dir(resdir) if isinstance(run_root, str): forcedir = os.path.join(run_root, self.PROJECT, self.sim_id) cc.change_results_dir(forcedir) cc.post_launch() cc.remove_failed() if statistics: tags=['[windspeed]'] stats_df = cc.statistics(calc_mech_power=calc_mech_power, ch_fatigue=[], tags=tags, update=False) ftarget = os.path.join(self.POST_DIR, '%s_statistics.xlsx') stats_df.to_excel(ftarget % self.sim_id) class MappingsH2HS2(object): def __init__(self, config): """ Parameters ---------- config : Config class based on ConfigBase """ self.hs2_res = hs2.results() self.h2_maps = config.h2_maps self.units = {'curved_s': '[m]', 'Cl': '[-]', 'Cd': '[-]', 'Ct': '[-]', 'Cp': '[-]', 'ax_ind': '[-]', 'tan_ind': '[-]', 'vrel': '[m/s]', 'inflow_angle': '[deg]', 'AoA': '[deg]', 'pos_x': '[m]', 'pos_y': '[m]', 'pos_z': '[m]', 'def_x': '[m]', 'def_y': '[m]', 'def_z': '[m]', 'torsion': '[deg]', 'twist': '[deg]', 'ax_ind_vel': '[m/s]', 'tan_ind_vel': '[m/s]', 'F_x': '[N/m]', 'F_y': '[N/m]', 'M': '[Nm/m]', 'chord': '[m]'} def powercurve(self, h2_df_stats, fname_hs): self._powercurve_h2(h2_df_stats) self._powercurve_hs2(fname_hs) def _powercurve_h2(self, df_stats): df_stats.sort_values('[windspeed]', inplace=True) df_mean = pd.DataFrame() df_std = pd.DataFrame() for key, value in self.h2_maps.items(): tmp = df_stats[df_stats['channel']==key] if len(tmp) == 0: rpl = (key, value) msg = 'HAWC2 channel %s is needed for %s but is missing' % rpl raise ValueError(msg) df_mean[value] = tmp['mean'].values.copy() df_std[value] = tmp['std'].values.copy() # also add the wind speed df_mean['windspeed'] = tmp['[windspeed]'].values.copy() df_std['windspeed'] = tmp['[windspeed]'].values.copy() self.pwr_h2_mean = df_mean self.pwr_h2_std = df_std self.h2_df_stats = df_stats def _powercurve_hs2(self, fname): mappings = {'P [kW]' :'P_aero', 'T [kN]' :'T_aero', 'V [m/s]' :'windspeed'} df_pwr, units = self.hs2_res.load_pwr_df(fname) self.pwr_hs = pd.DataFrame() for key, value in mappings.items(): self.pwr_hs[value] = df_pwr[key].values.copy() def blade_distribution(self, fname_h2, fname_hs2, h2_df_stats=None, fname_h2_tors=None): self.hs2_res.load_ind(fname_hs2) self.h2_res = sim.windIO.ReadOutputAtTime(fname_h2) self._distribution_hs2() self._distribution_h2() if h2_df_stats is not None: self.h2_df_stats = h2_df_stats if fname_h2_tors is not None: self.distribution_stats_h2(fname_h2_tors, 'Tors_e', 'torsion') def _distribution_hs2(self): """Read a HAWCStab2 *.ind file (blade distribution loading) rot_angle and rot_vec_123 in HS2 should be in rotor polar coordinates """ mapping_hs2 = {'s [m]' :'curved_s', 'CL0 [-]' :'Cl', 'CD0 [-]' :'Cd', 'CT [-]' :'Ct', 'CP [-]' :'Cp', 'A [-]' :'ax_ind', 'AP [-]' :'tan_ind', 'U0 [m/s]' :'vrel', 'PHI0 [rad]' :'inflow_angle', 'ALPHA0 [rad]':'AoA', 'X_AC0 [m]' :'pos_x', 'Y_AC0 [m]' :'pos_y', 'Z_AC0 [m]' :'pos_z', 'UX0 [m]' :'def_x', 'UY0 [m]' :'def_y', 'UZ0 [m]' :'def_z', 'Tors. [rad]' :'torsion', 'Twist[rad]' :'twist', 'V_a [m/s]' :'ax_ind_vel', 'V_t [m/s]' :'tan_ind_vel', 'FX0 [N/m]' :'F_x', 'FY0 [N/m]' :'F_y', 'M0 [Nm/m]' :'M', 'chord [m]' :'chord', 'angle [rad]' :'rot_angle', 'v_1 [-]' :'rot_vec_1', 'v_2 [-]' :'rot_vec_2', 'v_3 [-]' :'rot_vec_3'} try: hs2_cols = list(mapping_hs2) # select only the HS channels that will be used for the mapping std_cols = list(mapping_hs2.values()) self.hs_aero = self.hs2_res.ind.df_data[hs2_cols].copy() except KeyError: # some results have been created with older HAWCStab2 that did not # include CT and CP columns mapping_hs2.pop('CT [-]') mapping_hs2.pop('CP [-]') hs2_cols = list(mapping_hs2) std_cols = list(mapping_hs2.values()) # select only the HS channels that will be used for the mapping self.hs_aero = self.hs2_res.ind.df_data[hs2_cols].copy() # change column names to the standard form that is shared with H2 self.hs_aero.columns = std_cols chord12 = self.hs_aero['chord'] / 2.0 self.hs_aero['pos_x'] -= (np.cos(self.hs_aero['twist'])*chord12) self.hs_aero['pos_y'] += (np.sin(self.hs_aero['twist'])*chord12) self.hs_aero['AoA'] *= (180.0/np.pi) self.hs_aero['inflow_angle'] *= (180.0/np.pi) self.hs_aero['torsion'] *= (180.0/np.pi) self.hs_aero['twist'] *= (180.0/np.pi) def _distribution_h2(self): mapping_h2 = { 'Radius_s' :'curved_s', 'Cl' :'Cl', 'Cd' :'Cd', 'Ct_local' :'Ct', 'Cq_local' :'Cq', 'Induc_RPy' :'ax_ind_vel', 'Induc_RPx' :'tan_ind_vel', 'Vrel' :'vrel', 'Inflow_ang':'inflow_angle', 'alfa' :'AoA', 'pos_RP_x' :'pos_x', 'pos_RP_y' :'pos_y', 'pos_RP_z' :'pos_z', 'Chord' :'chord', 'Secfrc_RPx':'F_x', 'Secfrc_RPy':'F_y', 'Secmom_RPz':'M'} h2_cols = list(mapping_h2) std_cols = list(mapping_h2.values()) # select only the h2 channels that will be used for the mapping h2_aero = self.h2_res[h2_cols].copy() # change column names to the standard form that is shared with HS h2_aero.columns = std_cols h2_aero['def_x'] = self.h2_res['Pos_B_x'] - self.h2_res['Inipos_x_x'] h2_aero['def_y'] = self.h2_res['Pos_B_y'] - self.h2_res['Inipos_y_y'] h2_aero['def_z'] = self.h2_res['Pos_B_z'] - self.h2_res['Inipos_z_z'] h2_aero['ax_ind_vel'] *= (-1.0) # h2_aero['pos_x'] += (self.h2_res['Chord'] / 2.0) h2_aero['F_x'] *= (1e3) h2_aero['F_y'] *= (1e3) h2_aero['M'] *= (1e3) h2_aero['M'] -= (h2_aero['F_y']*h2_aero['chord']/2.0) h2_aero['twist'] = np.nan # # HAWC2 includes root and tip nodes, while HAWC2 doesn't. Remove them # h2_aero = h2_aero[1:-1] self.h2_aero = h2_aero def distribution_stats_h2(self, fname_h2, sensortype, newname): """Determine blade distribution sensor from the HAWC2 statistics. This requires that for each aerodynamic calculation point there should be an output sensor defined manually in the output section. Parameters ---------- fname_h2 sensortype newname """ if not hasattr(self, 'h2_aero'): raise UserWarning('first run blade_distribution') # load the HAWC2 .sel file for the channels fpath = os.path.dirname(fname_h2) fname = os.path.basename(fname_h2) res = sim.windIO.LoadResults(fpath, fname, readdata=False) sel = res.ch_df[res.ch_df.sensortype == sensortype].copy() if len(sel) == 0: msg = 'HAWC2 sensor type "%s" is missing, are they defined?' raise ValueError(msg % sensortype) sel.sort_values(['radius'], inplace=True) tors_e_channels = sel.ch_name.tolist() # find the current case in the statistics DataFrame case = fname.replace('.htc', '') df_case = self.h2_df_stats[self.h2_df_stats['[case_id]']==case].copy() # and select all the torsion channels df_tors_e = df_case[df_case.channel.isin(tors_e_channels)].copy() # join the stats with the channel descriptions DataFrames, have the # same name on the joining column df_tors_e.set_index('channel', inplace=True) sel.set_index('ch_name', inplace=True) # joining happens on the index, and for which the same channel has been # used: the unique HAWC2 channel naming scheme df_tors_e = pd.concat([df_tors_e, sel], axis=1) df_tors_e.radius = df_tors_e.radius.astype(np.float64) # sorting on radius, combine with ch_df df_tors_e.sort_values(['radius'], inplace=True) # FIXME: what if number of torsion outputs is less than aero # calculation points? self.h2_aero['%s' % newname] = df_tors_e['mean'].values.copy() self.h2_aero['%s_std' % newname] = df_tors_e['std'].values.copy() self.h2_aero['%s_radius_s' % newname] = df_tors_e['radius'].values.copy() def body_structure_modes(self, fname_h2, fname_hs): self._body_structure_modes_h2(fname_h2) self._body_structure_modes_hs(fname_hs) def _body_structure_modes_h2(self, fname): self.body_freq_h2 = sim.windIO.ReadEigenBody(fname) blade_h2 = self.body_freq_h2[self.body_freq_h2['body']=='blade1'].copy() # because HAWCStab2 is sorted by frequency blade_h2.sort_values('Fd_hz', inplace=True) # HAWC2 usually has a lot of duplicate entries blade_h2.drop_duplicates('Fd_hz', keep='first', inplace=True) # also drop the ones with very high damping, and 0 frequency query = '(log_decr_pct < 500 and log_decr_pct > -500) and Fd_hz > 0.0' self.blade_body_freq_h2 = blade_h2.query(query) def _body_structure_modes_hs(self, fname): self.body_freq_hs = hs2.results().load_cmb_df(fname) class Plots(object): """ Comparison plots between HACW2 and HAWCStab2. This is done based on the HAWC2 output output_at_time, and HAWCStab2 output *.ind """ def __init__(self, config): """ Parameters ---------- config : Config class based on ConfigBase """ self.h2c = 'b' self.h2ms = '+' self.h2ls = '-' self.hsc = 'r' self.hsms = 'x' self.hsls = '--' self.errls = '-' self.errc = 'k' self.errms = 'x' # self.errlab = 'diff [\\%]' self.errlab = 'diff' self.interactive = False self.config = config self.dist_size = (16, 11) self.dist_nrows = 3 self.dist_ncols = 4 self.dist_channels = ['pos_x', 'pos_y', 'AoA', 'inflow_angle', 'Cl', 'Cd', 'vrel', 'ax_ind_vel', 'F_x', 'F_y', 'M', 'torsion'] def load_h2(self, fname_h2, h2_df_stats=None, fname_h2_tors=None): res = MappingsH2HS2(self.config) res.h2_res = sim.windIO.ReadOutputAtTime(fname_h2) self.units = res.units res._distribution_h2() if h2_df_stats is not None: res.h2_df_stats = h2_df_stats if fname_h2_tors is not None: res.distribution_stats_h2(fname_h2_tors, 'Tors_e', 'torsion') return res def load_hs(self, fname_hs): res = MappingsH2HS2(self.config) res.hs2_res.load_ind(fname_hs) self.units = res.units res._distribution_hs2() return res def new_fig(self, title=None, nrows=2, ncols=1, dpi=150, size=(12.0, 5.0)): if self.interactive: subplots = plt.subplots else: subplots = mplutils.subplots fig, axes = subplots(nrows=nrows, ncols=ncols, dpi=dpi, figsize=size) if isinstance(axes, np.ndarray): axes = axes.ravel() else: axes = [axes] if title is not None: fig.suptitle(title) return fig, axes def set_axes_label_grid(self, axes, setlegend=False): if isinstance(axes, np.ndarray): axes = axes.ravel() for ax in axes: if setlegend: leg = ax.legend(loc='best') if leg is not None: leg.get_frame().set_alpha(0.5) ax.grid(True) return axes def save_fig(self, fig, axes, fname): fig.tight_layout() fig.subplots_adjust(top=0.89) fig.savefig(fname, dpi=150) fig.clear() print('saved:', fname) def distribution(self, results, labels, title, channels, x_ax='pos_z', xlabel='Z-coordinate [m]', nrows=2, ncols=4, size=(16, 5), i0=1, iplot_legend=0, legloc='best'): """ Compare blade distribution results """ res1 = results[0] res2 = results[1] lab1 = labels[0] lab2 = labels[1] radius1 = res1[x_ax].values radius2 = res2[x_ax].values fig, axes = self.new_fig(title=title, nrows=nrows, ncols=ncols, size=size) if isinstance(axes, np.ndarray): axesflat = axes.ravel() else: axesflat = axes for i, chan in enumerate(channels): ax = axesflat[i] ax.plot(radius1, res1[chan].values, color=self.h2c, label=lab1, alpha=0.9, marker=self.h2ms, ls=self.h2ls) ax.plot(radius2, res2[chan].values, color=self.hsc, label=lab2, alpha=0.7, marker=self.hsms, ls=self.hsls) ax.set_ylabel('%s %s' % (chan.replace('_', '\\_'), self.units[chan])) xlim = max(radius1.max(), radius2.max()) ax.set_xlim([0, xlim]) # if len(radius1) > len(radius2): # radius = res1.hs_aero['pos_z'].values[n0:] # x = res2.hs_aero['pos_z'].values[n0:] # y = res2.hs_aero[chan].values[n0:] # qq1 = res1.hs_aero[chan].values[n0:] # qq2 = interpolate.griddata(x, y, radius) # elif len(radius1) < len(radius2): # radius = res2.hs_aero['pos_z'].values[n0:] # x = res1.hs_aero['pos_z'].values[n0:] # y = res1.hs_aero[chan].values[n0:] # qq1 = interpolate.griddata(x, y, radius) # qq2 = res2.hs_aero[chan].values[n0:] # else: # if np.allclose(radius1, radius2): # radius = res1.hs_aero['pos_z'].values[n0:] # qq1 = res1.hs_aero[chan].values[n0:] # qq2 = res2.hs_aero[chan].values[n0:] # else: # radius = res1.hs_aero['pos_z'].values[n0:] # x = res2.hs_aero['pos_z'].values[n0:] # y = res2.hs_aero[chan].values[n0:] # qq1 = res1.hs_aero[chan].values[n0:] # qq2 = interpolate.griddata(x, y, radius) # relative errors on the right axes # err = np.abs(1.0 - (res1[chan].values / res2[chan].values))*100.0 # absolute errors on the right axes err = res1[chan].values[i0:] - res2[chan].values[i0:] axr = ax.twinx() axr.plot(radius1[i0:], err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab, marker=self.errms) # if err.max() > 50: # axr.set_ylim([0, 35]) # use axr for the legend, but only for defined plot if i == iplot_legend: lines = ax.lines + axr.lines labels = [l.get_label() for l in lines] leg = axr.legend(lines, labels, loc=legloc) leg.get_frame().set_alpha(0.5) # x-label only on the last row for k in range(ncols): axesflat[-k-1].set_xlabel(xlabel) axes = self.set_axes_label_grid(axes) return fig, axes def all_h2_channels(self, results, labels, fpath, channels=None, size=(10,5)): """Results is a list of res (=HAWC2 results object)""" for chan, details in results[0].ch_dict.items(): if channels is None or chan not in channels: continue resp = [] for res in results: resp.append([res.sig[:,0], res.sig[:,details['chi']]]) fig, axes = self.new_fig(title=chan.replace('_', '\\_'), size=size) try: mplutils.time_psd(resp, labels, axes, alphas=[1.0, 0.7], NFFT=None, colors=['k-', 'r-'], res_param=250, f0=0, f1=5, nr_peaks=10, min_h=15, mark_peaks=False) except Exception as e: print('****** FAILED') print(e) continue axes[0].set_xlim([0,5]) axes[1].set_xlim(res.sig[[0,-1],0]) fname = os.path.join(fpath, chan + '.png') self.save_fig(fig, axes, fname) def h2_blade_distribution(self, fname_1, fname_2, title, labels, n0=0, df_stats1=None, df_stats2=None, iplot_legend=0, legloc='best'): """ Compare blade distribution aerodynamics of two HAWC2 cases. """ tors1 = fname_1.split('_aero_at_tstop')[0] res1 = self.load_h2(fname_1, h2_df_stats=df_stats1, fname_h2_tors=tors1) tors2 = fname_2.split('_aero_at_tstop')[0] res2 = self.load_h2(fname_2, h2_df_stats=df_stats2, fname_h2_tors=tors2) results = [res1.h2_aero[n0+1:], res2.h2_aero[n0+1:]] fig, axes = self.distribution(results, labels, title, self.dist_channels, x_ax='pos_z', xlabel='Z-coordinate [m]', nrows=self.dist_nrows, ncols=self.dist_ncols, size=self.dist_size, iplot_legend=iplot_legend, legloc=legloc) return fig, axes def hs_blade_distribution(self, fname_1, fname_2, title, labels, n0=0, iplot_legend=0, legloc='best'): res1 = self.load_hs(fname_1) res2 = self.load_hs(fname_2) results = [res1.hs_aero[n0:], res2.hs_aero[n0:]] # channels = ['pos_x', 'pos_y', 'AoA', 'inflow_angle', 'Cl', 'Cd', # 'vrel', 'ax_ind_vel'] fig, axes = self.distribution(results, labels, title, self.dist_channels, x_ax='pos_z', xlabel='Z-coordinate [m]', nrows=self.dist_nrows, ncols=self.dist_ncols, size=self.dist_size, iplot_legend=iplot_legend, legloc=legloc) return fig, axes def blade_distribution(self, fname_h2, fname_hs2, title, n0=0, h2_df_stats=None, fname_h2_tors=None, iplot_legend=0, legloc='best'): """Compare aerodynamics, blade deflections between HAWC2 and HAWCStab2. This is based on HAWCSTab2 *.ind files, and an HAWC2 output_at_time output file. Parameters ---------- fname_h2 fname_hs2 title n0 : int, default=0 Number of nodes to ignore at the blade root section """ results = MappingsH2HS2(self.config) results.blade_distribution(fname_h2, fname_hs2, h2_df_stats=h2_df_stats, fname_h2_tors=fname_h2_tors) self.units = results.units res = [results.h2_aero[n0+1:-1], results.hs_aero[n0:]] # channels = ['pos_x', 'pos_y', 'AoA', 'inflow_angle', 'Cl', 'Cd', # 'vrel', 'ax_ind_vel'] labels = ['HAWC2', 'HAWCStab2'] fig, axes = self.distribution(res, labels, title, self.dist_channels, x_ax='pos_z', xlabel='Z-coordinate [m]', nrows=self.dist_nrows, ncols=self.dist_ncols, size=self.dist_size, iplot_legend=iplot_legend, legloc=legloc) return fig, axes def blade_distribution2(self, fname_h2, fname_hs2, title, n0=0, iplot_legend=0, legloc='best'): """Compare aerodynamics, blade deflections between HAWC2 and HAWCStab2. This is based on HAWCSTab2 *.ind files, and an HAWC2 output_at_time output file. """ results = MappingsH2HS2(self.config) results.blade_distribution(fname_h2, fname_hs2) res = [results.h2_aero[n0+1:-1], results.hs_aero[n0:]] channels = ['pos_x', 'pos_y', 'torsion', 'inflow_angle', 'Cl', 'Cd', 'vrel', 'AoA', 'F_x', 'F_y', 'M', 'ax_ind_vel', 'torsion'] labels = ['HAWC2', 'HAWCStab2'] fig, axes = self.distribution(res, labels, title, channels, x_ax='pos_z', xlabel='Z-coordinate [m]', nrows=3, ncols=4, size=(16, 12), iplot_legend=iplot_legend, legloc=legloc) return fig, axes def powercurve(self, h2_df_stats, fname_hs, title, size=(8.6, 4)): results = MappingsH2HS2(self.config) results.powercurve(h2_df_stats, fname_hs) fig, axes = self.new_fig(title=title, nrows=1, ncols=2, size=size) wind_h2 = results.pwr_h2_mean['windspeed'].values wind_hs = results.pwr_hs['windspeed'].values # POWER --------------------------------------------------------------- ax = axes[0] ax.set_ylabel('Power [kW]') ax.set_xlabel('Wind speed [m/s]') # HAWC2 keys = ['P_aero', 'P_mech'] lss = [self.h2ls, '--', ':'] # HAWC2 for key, ls in zip(keys, lss): # it is possible the mechanical power has not been calculated if key not in results.pwr_h2_mean: continue label = 'HAWC2 %s' % (key.replace('_', '$_{') + '}$') yerr = results.pwr_h2_std[key].values c = self.h2c ax.errorbar(wind_h2, results.pwr_h2_mean[key].values, color=c, ls=ls, label=label, alpha=0.9, yerr=yerr, marker=self.h2ms) # HAWCSTAB2 key = 'P_aero' ax.plot(wind_hs, results.pwr_hs[key].values, label='HAWCStab2', alpha=0.7, color=self.hsc, ls=self.hsls, marker=self.hsms) # errors on the right axes axr = ax.twinx() assert np.allclose(wind_h2, wind_hs) qq1 = results.pwr_h2_mean[key].values qq2 = results.pwr_hs[key].values err = qq1 - qq2 axr.plot(wind_hs, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab + ' P$_{aero}$') ax.set_xlim([wind_h2.min(), wind_h2.max()]) # legends lines, labels = ax.get_legend_handles_labels() linesr, labelsr = axr.get_legend_handles_labels() leg = axr.legend(lines + linesr, labels + labelsr, loc='lower right') leg.get_frame().set_alpha(0.5) # THRUST -------------------------------------------------------------- ax = axes[1] ax.set_ylabel('Thrust [kN]') ax.set_xlabel('Wind speed [m/s]') keys = ['T_aero', 'T_shafttip'] lss = [self.h2ls, '--', ':'] # HAWC2 for key, ls in zip(keys, lss): label = 'HAWC2 %s' % (key.replace('_', '$_{') + '}$') yerr = results.pwr_h2_std[key].values c = self.h2c ax.errorbar(wind_h2, results.pwr_h2_mean[key].values, color=c, ls=ls, label=label, alpha=0.9, yerr=yerr, marker=self.h2ms) # HAWCStab2 ax.plot(wind_hs, results.pwr_hs['T_aero'].values, color=self.hsc, alpha=0.7, label='HAWCStab2 T$_{aero}$', marker=self.hsms, ls=self.hsls) # errors on the right axes axr = ax.twinx() qq1 = results.pwr_h2_mean['T_aero'].values qq2 = results.pwr_hs['T_aero'].values err = qq1 - qq2 axr.plot(wind_hs, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab + ' T$_{aero}$') ax.set_xlim([wind_h2.min(), wind_h2.max()]) ax.set_xlabel('Wind speed [m/s]') # legends lines, labels = ax.get_legend_handles_labels() linesr, labelsr = axr.get_legend_handles_labels() leg = axr.legend(lines + linesr, labels + labelsr, loc='lower right') leg.get_frame().set_alpha(0.5) axes = self.set_axes_label_grid(axes, setlegend=False) return fig, axes def h2_powercurve(self, h2_df_stats1, h2_df_stats2, title, labels, size=(8.6,4)): res1 = MappingsH2HS2(self.config) res1._powercurve_h2(h2_df_stats1) wind1 = res1.pwr_h2_mean['windspeed'].values res2 = MappingsH2HS2(self.config) res2._powercurve_h2(h2_df_stats2) wind2 = res2.pwr_h2_mean['windspeed'].values fig, axes = self.new_fig(title=title, nrows=1, ncols=2, size=size) # POWER ax = axes[0] key = 'P_aero' # HAWC2 yerr1 = res1.pwr_h2_std[key].values ax.errorbar(wind1, res1.pwr_h2_mean[key].values, color=self.h2c, yerr=yerr1, marker=self.h2ms, ls=self.h2ls, label=labels[0], alpha=0.9) yerr2 = res2.pwr_h2_std[key] ax.errorbar(wind2, res2.pwr_h2_mean[key].values, color=self.hsc, yerr=yerr2, marker=self.hsms, ls=self.hsls, label=labels[1], alpha=0.7) ax.set_ylabel('Power [kW]') ax.set_xlabel('Wind speed [m/s]') # relative errors on the right axes axr = ax.twinx() assert np.allclose(wind1, wind2) qq1 = res1.pwr_h2_mean[key].values qq2 = res2.pwr_h2_mean[key].values err = np.abs(1.0 - qq1 / qq2)*100.0 axr.plot(wind1, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab) # THRUST ax = axes[1] keys = ['T_aero', 'T_shafttip'] lss = [self.h2ls, '--', ':'] for key, ls in zip(keys, lss): label = '%s %s' % (labels[0], key.replace('_', '$_{') + '}$') yerr = res1.pwr_h2_std[key].values c = self.h2c ax.errorbar(wind1, res1.pwr_h2_mean[key].values, color=c, ls=ls, label=label, alpha=0.9, yerr=yerr, marker=self.h2ms) for key, ls in zip(keys, lss): label = '%s %s' % (labels[1], key.replace('_', '$_{') + '}$') yerr = res2.pwr_h2_std[key].values c = self.hsc ax.errorbar(wind2, res2.pwr_h2_mean[key].values, color=c, ls=ls, label=label, alpha=0.9, yerr=yerr, marker=self.hsms) # relative errors on the right axes axr = ax.twinx() qq1 = res1.pwr_h2_mean['T_aero'].values qq2 = res2.pwr_h2_mean['T_aero'].values err = np.abs(1.0 - (qq1 / qq2))*100.0 axr.plot(wind1, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab) ax.set_ylabel('Thrust [kN]') ax.set_xlabel('Wind speed [m/s]') axes = self.set_axes_label_grid(axes, setlegend=True) # # use axr for the legend # lines = ax.lines + axr.lines # labels = [l.get_label() for l in lines] # leg = axr.legend(lines, labels, loc='best') # leg.get_frame().set_alpha(0.5) return fig, axes def hs_powercurve(self, fname1, fname2, title, labels, size=(8.6, 4)): res1 = MappingsH2HS2(self.config) res1._powercurve_hs2(fname1) wind1 = res1.pwr_hs['windspeed'].values res2 = MappingsH2HS2(self.config) res2._powercurve_hs2(fname2) wind2 = res2.pwr_hs['windspeed'].values fig, axes = self.new_fig(title=title, nrows=1, ncols=2, size=size) # POWER ax = axes[0] key = 'P_aero' ax.plot(wind1, res1.pwr_hs['P_aero'].values, label=labels[0], alpha=0.9, color=self.h2c, ls=self.h2ls, marker=self.h2ms) ax.plot(wind2, res2.pwr_hs['P_aero'].values, label=labels[1], alpha=0.7, color=self.hsc, ls=self.hsls, marker=self.hsms) ax.set_ylabel('Power [kW]') ax.set_xlabel('Wind speed [m/s]') # relative errors on the right axes axr = ax.twinx() assert np.allclose(wind1, wind2) qq1 = res1.pwr_hs[key].values qq2 = res2.pwr_hs[key].values err = np.abs(1.0 - qq1 / qq2)*100.0 axr.plot(wind1, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab) # axr.set_ylim([]) # THRUST ax = axes[1] ax.plot(wind1, res1.pwr_hs['T_aero'].values, color=self.h2c, alpha=0.9, label=labels[0], marker=self.h2ms, ls=self.h2ls) ax.plot(wind2, res2.pwr_hs['T_aero'].values, color=self.hsc, alpha=0.7, label=labels[1], marker=self.hsms, ls=self.hsls) # relative errors on the right axes axr = ax.twinx() qq1 = res1.pwr_hs['T_aero'].values qq2 = res2.pwr_hs['T_aero'].values err = np.abs(1.0 - (qq1 / qq2))*100.0 axr.plot(wind1, err, color=self.errc, ls=self.errls, alpha=0.6, label=self.errlab) ax.set_ylabel('Thrust [kN]') ax.set_xlabel('Wind speed [m/s]') axes = self.set_axes_label_grid(axes, setlegend=True) # # use axr for the legend # lines = ax.lines + axr.lines # labels = [l.get_label() for l in lines] # leg = axr.legend(lines, labels, loc='best') # leg.get_frame().set_alpha(0.5) return fig, axes if __name__ == '__main__': dummy = None