# -*- coding: utf-8 -*- """ Created on Thu Apr 3 19:53:59 2014 @author: dave """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import dict from io import open as opent from builtins import range from builtins import str from builtins import int from future import standard_library standard_library.install_aliases() from builtins import object __author__ = 'David Verelst' __license__ = 'GPL' __version__ = '0.5' import os import copy import struct import math from time import time import codecs from itertools import chain import numpy as np import scipy as sp import scipy.integrate as integrate import pandas as pd # misc is part of prepost, which is available on the dtu wind gitlab server: # https://gitlab.windenergy.dtu.dk/dave/prepost from wetb.prepost import misc # wind energy python toolbox, available on the dtu wind redmine server: # http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools from wetb.hawc2.Hawc2io import ReadHawc2 from wetb.fatigue_tools.fatigue import eq_load class LogFile(object): """Check a HAWC2 log file for errors. """ def __init__(self): # the total message list log: self.MsgListLog = [] # a smaller version, just indication if there are errors: self.MsgListLog2 = dict() # specify which message to look for. The number track's the order. # this makes it easier to view afterwards in spreadsheet: # every error will have its own column # error messages that appear during initialisation self.err_init = {} self.err_init[' *** ERROR *** Error in com'] = len(self.err_init) self.err_init[' *** ERROR *** in command '] = len(self.err_init) # *** WARNING *** A comma "," is written within the command line self.err_init[' *** WARNING *** A comma ",'] = len(self.err_init) # *** ERROR *** Not correct number of parameters self.err_init[' *** ERROR *** Not correct '] = len(self.err_init) # *** INFO *** End of file reached self.err_init[' *** INFO *** End of file r'] = len(self.err_init) # *** ERROR *** No line termination in command line self.err_init[' *** ERROR *** No line term'] = len(self.err_init) # *** ERROR *** MATRIX IS NOT DEFINITE self.err_init[' *** ERROR *** MATRIX IS NO'] = len(self.err_init) # *** ERROR *** There are unused relative self.err_init[' *** ERROR *** There are un'] = len(self.err_init) # *** ERROR *** Error finding body based self.err_init[' *** ERROR *** Error findin'] = len(self.err_init) # *** ERROR *** In body actions self.err_init[' *** ERROR *** In body acti'] = len(self.err_init) # *** ERROR *** Command unknown and ignored self.err_init[' *** ERROR *** Command unkn'] = len(self.err_init) # *** ERROR *** ERROR - More bodies than elements on main_body: tower self.err_init[' *** ERROR *** ERROR - More'] = len(self.err_init) # *** ERROR *** The program will stop self.err_init[' *** ERROR *** The program '] = len(self.err_init) # *** ERROR *** Unknown begin command in topologi. self.err_init[' *** ERROR *** Unknown begi'] = len(self.err_init) # *** ERROR *** Not all needed topologi main body commands present self.err_init[' *** ERROR *** Not all need'] = len(self.err_init) # *** ERROR *** opening timoschenko data file self.err_init[' *** ERROR *** opening tim'] = len(self.err_init) # *** ERROR *** Error opening AE data file self.err_init[' *** ERROR *** Error openin'] = len(self.err_init) # *** ERROR *** Requested blade _ae set number not found in _ae file self.err_init[' *** ERROR *** Requested bl'] = len(self.err_init) # Error opening PC data file self.err_init[' Error opening PC data file'] = len(self.err_init) # *** ERROR *** error reading mann turbulence self.err_init[' *** ERROR *** error readin'] = len(self.err_init) # *** INFO *** The DLL subroutine self.err_init[' *** INFO *** The DLL subro'] = len(self.err_init) # ** WARNING: FROM ESYS ELASTICBAR: No keyword self.err_init[' ** WARNING: FROM ESYS ELAS'] = len(self.err_init) # *** ERROR *** DLL ./control/killtrans.dll could not be loaded - error! self.err_init[' *** ERROR *** DLL'] = len(self.err_init) # *** ERROR *** The DLL subroutine self.err_init[' *** ERROR *** The DLL subr'] = len(self.err_init) # *** ERROR *** Mann turbulence length scale must be larger than zero! # *** ERROR *** Mann turbulence alpha eps value must be larger than zero! # *** ERROR *** Mann turbulence gamma value must be larger than zero! self.err_init[' *** ERROR *** Mann turbule'] = len(self.err_init) # *** WARNING *** Shear center x location not in elastic center, set to zero self.err_init[' *** WARNING *** Shear cent'] = len(self.err_init) # Turbulence file ./xyz.bin does not exist self.err_init[' Turbulence file '] = len(self.err_init) self.err_init[' *** WARNING ***'] = len(self.err_init) self.err_init[' *** ERROR ***'] = len(self.err_init) self.err_init[' WARNING'] = len(self.err_init) self.err_init[' ERROR'] = len(self.err_init) # error messages that appear during simulation self.err_sim = {} # *** ERROR *** Wind speed requested inside self.err_sim[' *** ERROR *** Wind speed r'] = len(self.err_sim) # Maximum iterations exceeded at time step: self.err_sim[' Maximum iterations exceede'] = len(self.err_sim) # Solver seems not to converge: self.err_sim[' Solver seems not to conver'] = len(self.err_sim) # *** ERROR *** Out of x bounds: self.err_sim[' *** ERROR *** Out of x bou'] = len(self.err_sim) # *** ERROR *** Out of limits in user defined shear field - limit value used self.err_sim[' *** ERROR *** Out of limit'] = len(self.err_sim) # TODO: error message from a non existing channel output/input # add more messages if required... self.init_cols = len(self.err_init) self.sim_cols = len(self.err_sim) self.header = None def readlog(self, fname, case=None, save_iter=False): """ """ # open the current log file with open(fname, 'r') as f: lines = f.readlines() # keep track of the messages allready found in this file tempLog = [] tempLog.append(fname) exit_correct, found_error = False, False subcols_sim = 4 subcols_init = 2 # create empty list item for the different messages and line # number. Include one column for non identified messages for j in range(self.init_cols): # 2 sub-columns per message: nr, msg for k in range(subcols_init): tempLog.append('') for j in range(self.sim_cols): # 4 sub-columns per message: first, last, nr, msg for k in range(subcols_sim): tempLog.append('') # and two more columns at the end for messages of unknown origin tempLog.append('') tempLog.append('') # if there is a cases object, see how many time steps we expect if case is not None: dt = float(case['[dt_sim]']) time_steps = int(float(case['[time_stop]']) / dt) iterations = np.ndarray( (time_steps+1,3), dtype=np.float32 ) else: iterations = np.ndarray( (len(lines),3), dtype=np.float32 ) dt = False iterations[:,0:2] = -1 iterations[:,2] = 0 # keep track of the time_step number time_step, init_block = -1, True # check for messages in the current line # for speed: delete from message watch list if message is found for j, line in enumerate(lines): # all id's of errors are 27 characters long msg = line[:27] # remove the line terminator, this seems to take 2 characters # on PY2, but only one in PY3 line = line.replace('\n', '') # keep track of the number of iterations if line[:12] == ' Global time': time_step += 1 iterations[time_step,0] = float(line[14:40]) # for PY2, new line is 2 characters, for PY3 it is one char iterations[time_step,1] = int(line[-6:]) # time step is the first time stamp if not dt: dt = float(line[15:40]) # no need to look for messages if global time is mentioned continue elif line[:4] == ' kfw': pass # Global time = 17.7800000000000 Iter = 2 # kfw 0.861664060457402 # nearwake iterations 17 # computed relaxation factor 0.300000000000000 elif line[:20] == ' Starting simulation': init_block = False elif init_block: # if string is shorter, we just get a shorter string. # checking presence in dict is faster compared to checking # the length of the string # first, last, nr, msg if msg in self.err_init: # icol=0 -> fname icol = subcols_init*self.err_init[msg] + 1 # 0: number of occurances if tempLog[icol] == '': tempLog[icol] = '1' else: tempLog[icol] = str(int(tempLog[icol]) + 1) # 1: the error message itself tempLog[icol+1] = line found_error = True # find errors that can occur during simulation elif msg in self.err_sim: icol = subcols_sim*self.err_sim[msg] icol += subcols_init*self.init_cols + 1 # in case stuff already goes wrong on the first time step if time_step == -1: time_step = 0 # 1: time step of first occurance if tempLog[icol] == '': tempLog[icol] = '%i' % time_step # 2: time step of last occurance tempLog[icol+1] = '%i' % time_step # 3: number of occurances if tempLog[icol+2] == '': tempLog[icol+2] = '1' else: tempLog[icol+2] = str(int(tempLog[icol+2]) + 1) # 4: the error message itself tempLog[icol+3] = line found_error = True iterations[time_step,2] = 1 # method of last resort, we have no idea what message elif line[:10] == ' *** ERROR' or line[:10]==' ** WARNING': icol = subcols_sim*self.sim_cols icol += subcols_init*self.init_cols + 1 # line number of the message tempLog[icol] = j # and message tempLog[icol+1] = line found_error = True # in case stuff already goes wrong on the first time step if time_step == -1: time_step = 0 iterations[time_step,2] = 1 # simulation and simulation output time if case is not None: t_stop = float(case['[time_stop]']) duration = float(case['[duration]']) else: t_stop = -1 duration = -1 # see if the last line holds the sim time if line[:15] == ' Elapsed time :': exit_correct = True elapsed_time = float(line[15:-1]) tempLog.append( elapsed_time ) # in some cases, Elapsed time is not given, and the last message # might be: " Closing of external type2 DLL" elif line[:20] == ' Closing of external': exit_correct = True elapsed_time = iterations[time_step,0] tempLog.append( elapsed_time ) elif np.allclose(iterations[time_step,0], t_stop): exit_correct = True elapsed_time = iterations[time_step,0] tempLog.append( elapsed_time ) else: elapsed_time = -1 tempLog.append('') # give the last recorded time step tempLog.append('%1.11f' % iterations[time_step,0]) # simulation and simulation output time tempLog.append('%1.01f' % t_stop) tempLog.append('%1.04f' % (t_stop/elapsed_time)) tempLog.append('%1.01f' % duration) # as last element, add the total number of iterations itertotal = np.nansum(iterations[:,1]) tempLog.append('%i' % itertotal) # the delta t used for the simulation if dt: tempLog.append('%1.7f' % dt) else: tempLog.append('failed to find dt') # number of time steps tempLog.append('%i' % len(iterations) ) # if the simulation didn't end correctly, the elapsed_time doesn't # exist. Add the average and maximum nr of iterations per step # or, if only the structural and eigen analysis is done, we have 0 try: ratio = float(elapsed_time)/float(itertotal) tempLog.append('%1.6f' % ratio) except (UnboundLocalError, ZeroDivisionError, ValueError) as e: tempLog.append('') # when there are no time steps (structural analysis only) try: tempLog.append('%1.2f' % iterations[:,1].mean()) tempLog.append('%1.2f' % iterations[:,1].max()) except ValueError: tempLog.append('') tempLog.append('') # save the iterations in the results folder if save_iter: fiter = os.path.basename(fname).replace('.log', '.iter') fmt = ['%12.06f', '%4i', '%4i'] if case is not None: fpath = os.path.join(case['[run_dir]'], case['[iter_dir]']) # in case it has subdirectories for tt in [3,2,1]: tmp = os.path.sep.join(fpath.split(os.path.sep)[:-tt]) if not os.path.exists(tmp): os.makedirs(tmp) if not os.path.exists(fpath): os.makedirs(fpath) np.savetxt(fpath + fiter, iterations, fmt=fmt) else: logpath = os.path.dirname(fname) np.savetxt(os.path.join(logpath, fiter), iterations, fmt=fmt) # append the messages found in the current file to the overview log self.MsgListLog.append(tempLog) self.MsgListLog2[fname] = [found_error, exit_correct] def _msglistlog2csv(self, contents): """Write LogFile.MsgListLog to a csv file. Use LogFile._header to create a header. """ for k in self.MsgListLog: for n in k: contents = contents + str(n) + ';' # at the end of each line, new line symbol contents = contents + '\n' return contents def csv2df(self, fname): """Read a csv log file analysis and convert to a pandas.DataFrame """ colnames, min_itemsize, dtypes = self.headers4df() df = pd.read_csv(fname, header=0, names=colnames, sep=';', ) for col, dtype in dtypes.items(): df[col] = df[col].astype(dtype) # replace nan with empty for str columns if dtype == str: df[col] = df[col].str.replace('nan', '') return df def _header(self): """Header for log analysis csv file """ # write the results in a file, start with a header contents = 'file name;' + 'nr;msg;'*(self.init_cols) contents += 'first_tstep;last_tstep;nr;msg;'*(self.sim_cols) contents += 'lnr;msg;' # and add headers for elapsed time, nr of iterations, and sec/iteration contents += 'Elapsted time;last time step;Simulation time;' contents += 'real sim time;Sim output time;' contents += 'total iterations;dt;nr time steps;' contents += 'seconds/iteration;average iterations/time step;' contents += 'maximum iterations/time step;\n' return contents def headers4df(self): """Create header and a minimum itemsize for string columns when converting a Log check analysis to a pandas.DataFrame Returns ------- header : list List of column names as generated by WindIO.LogFile._header min_itemsize : dict Dictionary with column names as keys, and the minimum string lenght as values. dtypes : dict Dictionary with column names as keys, and data types as values """ chain_iter = chain.from_iterable colnames = ['file_name'] colnames.extend(list(chain_iter(('nr_%i' % i, 'msg_%i' % i) for i in range(31))) ) gr = ('first_tstep_%i', 'last_step_%i', 'nr_%i', 'msg_%i') colnames.extend(list(chain_iter( (k % i for k in gr) for i in range(100,105,1))) ) colnames.extend(['nr_extra', 'msg_extra']) colnames.extend(['elapsted_time', 'last_time_step', 'simulation_time', 'real_sim_time', 'sim_output_time', 'total_iterations', 'dt', 'nr_time_steps', 'seconds_p_iteration', 'mean_iters_p_time_step', 'max_iters_p_time_step', 'sim_id']) dtypes = {} # str and float datatypes for msg_cols = ['msg_%i' % i for i in range(30)] msg_cols.extend(['msg_%i' % i for i in range(100,105,1)]) msg_cols.append('msg_extra') dtypes.update({k:str for k in msg_cols}) # make the message/str columns long enough min_itemsize = {'msg_%i' % i : 100 for i in range(30)} # column names holding the number of occurances of messages nr_cols = ['nr_%i' % i for i in range(30)] nr_cols.extend(['nr_%i' % i for i in range(100,105,1)]) # other float values nr_cols.extend(['elapsted_time', 'total_iterations']) # NaN only exists in float arrays, not integers (NumPy limitation) # so use float instead of int dtypes.update({k:np.float64 for k in nr_cols}) return colnames, min_itemsize, dtypes class LoadResults(ReadHawc2): """Read a HAWC2 result data file Usage: obj = LoadResults(file_path, file_name) This class is called like a function: HawcResultData() will read the specified file upon object initialization. Available output: obj.sig[timeStep,channel] : complete result file in a numpy array obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array obj.error_msg: is 'none' if everything went OK, otherwise it holds the error The ch_dict key/values pairs are structured differently for different type of channels. Currently supported channels are: For forcevec, momentvec, state commands: key: coord-bodyname-pos-sensortype-component global-tower-node-002-forcevec-z local-blade1-node-005-momentvec-z hub1-blade1-elem-011-zrel-1.00-state pos-z value: ch_dict[tag]['coord'] ch_dict[tag]['bodyname'] ch_dict[tag]['pos'] = pos ch_dict[tag]['sensortype'] ch_dict[tag]['component'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the DLL's this is: key: DLL-dll_name-io-io_nr DLL-yaw_control-outvec-3 DLL-yaw_control-inpvec-1 value: ch_dict[tag]['dll_name'] ch_dict[tag]['io'] ch_dict[tag]['io_nr'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the bearings this is: key: bearing-bearing_name-output_type-units bearing-shaft_nacelle-angle_speed-rpm value: ch_dict[tag]['bearing_name'] ch_dict[tag]['output_type'] ch_dict[tag]['chi'] ch_dict[tag]['units'] """ # ch_df columns, these are created by LoadResults._unified_channel_names cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component', 'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr', 'direction']) # start with reading the .sel file, containing the info regarding # how to read the binary file and the channel information def __init__(self, file_path, file_name, debug=False, usecols=None, readdata=True): self.debug = debug # timer in debug mode if self.debug: start = time() self.file_path = file_path # remove .log, .dat, .sel extensions who might be accedental left if file_name[-4:] in ['.htc', '.sel', '.dat', '.log']: file_name = file_name[:-4] # FIXME: since HAWC2 will always have lower case output files, convert # any wrongly used upper case letters to lower case here self.file_name = file_name FileName = os.path.join(self.file_path, self.file_name) ReadOnly = 0 if readdata else 1 super(LoadResults, self).__init__(FileName, ReadOnly=ReadOnly) self.FileType = self.FileFormat[6:] self.N = int(self.NrSc) self.Nch = int(self.NrCh) self.ch_details = np.ndarray(shape=(self.Nch, 3), dtype='<U100') for ic in range(self.Nch): self.ch_details[ic, 0] = self.ChInfo[0][ic] self.ch_details[ic, 1] = self.ChInfo[1][ic] self.ch_details[ic, 2] = self.ChInfo[2][ic] ChVec = [] if usecols is None else usecols self._unified_channel_names() if readdata: self.sig = super(LoadResults, self).__call__(ChVec=ChVec) if self.debug: stop = time() - start print('time to load HAWC2 file:', stop, 's') def reformat_sig_details(self): """Change HAWC2 output description of the channels short descriptive strings, usable in plots obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array """ # CONFIGURATION: mappings between HAWC2 and short good output: change_list = [] change_list.append( ['original', 'new improved'] ) # change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] ) # change_list.append( ['My coo: hub1','blade1 root bending: edge'] ) # change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] ) # # change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] ) # change_list.append( ['My coo: hub2','blade2 root bending: edge'] ) # change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] ) # # change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] ) # change_list.append( ['My coo: hub3','blade3 root bending: edge'] ) # change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] ) change_list.append(['Mx coo: blade1', 'blade1 flap']) change_list.append(['My coo: blade1', 'blade1 edge']) change_list.append(['Mz coo: blade1', 'blade1 torsion']) change_list.append(['Mx coo: blade2', 'blade2 flap']) change_list.append(['My coo: blade2', 'blade2 edge']) change_list.append(['Mz coo: blade2', 'blade2 torsion']) change_list.append(['Mx coo: blade3', 'blade3 flap']) change_list.append(['My coo: blade3', 'blade3 edeg']) change_list.append(['Mz coo: blade3', 'blade3 torsion']) change_list.append(['Mx coo: hub1', 'blade1 out-of-plane']) change_list.append(['My coo: hub1', 'blade1 in-plane']) change_list.append(['Mz coo: hub1', 'blade1 torsion']) change_list.append(['Mx coo: hub2', 'blade2 out-of-plane']) change_list.append(['My coo: hub2', 'blade2 in-plane']) change_list.append(['Mz coo: hub2', 'blade2 torsion']) change_list.append(['Mx coo: hub3', 'blade3 out-of-plane']) change_list.append(['My coo: hub3', 'blade3 in-plane']) change_list.append(['Mz coo: hub3', 'blade3 torsion']) # this one will create a false positive for tower node nr1 change_list.append(['Mx coo: tower', 'tower top momemt FA']) change_list.append(['My coo: tower', 'tower top momemt SS']) change_list.append(['Mz coo: tower', 'yaw-moment']) change_list.append(['Mx coo: chasis', 'chasis momemt FA']) change_list.append(['My coo: chasis', 'yaw-moment chasis']) change_list.append(['Mz coo: chasis', 'chasis moment SS']) change_list.append(['DLL inp 2: 2', 'tower clearance']) self.ch_details_new = np.ndarray(shape=(self.Nch, 3), dtype='<U100') # approach: look for a specific description and change it. # This approach is slow, but will not fail if the channel numbers change # over different simulations for ch in range(self.Nch): # the change_list will always be slower, so this loop will be # inside the bigger loop of all channels self.ch_details_new[ch, :] = self.ch_details[ch, :] for k in range(len(change_list)): if change_list[k][0] == self.ch_details[ch, 0]: self.ch_details_new[ch, 0] = change_list[k][1] # channel description should be unique, so delete current # entry and stop looking in the change list del change_list[k] break # TODO: THIS IS STILL A WIP def _make_channel_names(self): """Give every channel a unique channel name which is (nearly) identical to the channel names as defined in the htc output section. Instead of spaces, use colon (;) to seperate the different commands. THIS IS STILL A WIP """ index = {} names = {'htc_name':[], 'chi':[], 'label':[], 'unit':[], 'index':[], 'name':[], 'description':[]} constraint_fmts = {'bea1':'constraint;bearing1', 'bea2':'constraint;bearing2', 'bea3':'constraint;bearing3', 'bea4':'constraint;bearing4'} # mbdy momentvec tower 1 1 global force_fmts = {'F':'mbdy;forcevec;{body};{nodenr:03i};{coord};{comp}', 'M':'mbdy;momentvec;{body};{nodenr:03i};{coord};{comp}'} state_fmt = 'mbdy;{state};{typ};{body};{elnr:03i};{zrel:01.02f};{coord}' wind_coord_map = {'Vx':'1', 'Vy':'2', 'Vz':'3'} wind_fmt = 'wind;{typ};{coord};{x};{y};{z};{comp}' for ch in range(self.Nch): name = self.ch_details[ch, 0] name_items = misc.remove_items(name.split(' '), '') description = self.ch_details[ch, 2] descr_items = misc.remove_items(description.split(' '), '') unit = self.ch_details[ch, 1] # default names htc_name = ' '.join(name_items+descr_items) label = '' coord = '' typ = '' elnr = '' nodenr = '' zrel = '' state = '' # CONSTRAINTS: BEARINGS if name_items[0] in constraint_fmts: htc_name = constraint_fmts[name_items[0]] + ';' htc_name += (descr_items[0] + ';') htc_name += unit # MBDY FORCES/MOMENTS elif name_items[0][0] in force_fmts: comp = name_items[0] if comp[0] == 'F': i0 = 1 else: i0 = 0 label = description.split('coo: ')[1].split(' ')[1] coord = descr_items[i0+5] body = descr_items[i0+1][5:]#.replace('Mbdy:', '') nodenr = int(descr_items[i0+3]) htc_name = force_fmts[comp[0]].format(body=body, coord=coord, nodenr=nodenr, comp=comp) # STATE: POS, VEL, ACC, STATE_ROT elif descr_items[0][:5] == 'State': if name_items[0] == 'State': i0 = 1 state = 'state' else: i0 = 0 state = 'state_rot' typ = name_items[i0+0] comp = name_items[i0+1] coord = name_items[i0+3] body = descr_items[3][5:]#.replace('Mbdy:', '') elnr = int(descr_items[5]) zrel = float(descr_items[6][6:])#.replace('Z-rel:', '')) if len(descr_items) > 8: label = ' '.join(descr_items[9:]) htc_name = state_fmt.format(typ=typ, body=body, elnr=elnr, zrel=zrel, coord=coord, state=state) # WINDSPEED elif description[:9] == 'Free wind': if descr_items[4] == 'gl.': coord = '1' # global else: coord = '2' # non-rotating rotor coordinates try: comp = wind_coord_map[descr_items[3][:-1]] typ = 'free_wind' except KeyError: comp = descr_items[3] typ = 'free_wind_hor' tmp = description.split('pos')[1] x, y, z = tmp.split(',') # z might hold a label.... z_items = z.split(' ') if len(z_items) > 1: label = ' '.join(z_items[1:]) z = z_items[0] x, y, z = x.strip(), y.strip(), z.strip() htc_name = wind_fmt.format(typ=typ, coord=coord, x=x, y=y, z=z, comp=comp) names['htc_name'].append(htc_name) names['chi'].append(ch) # this is the Channel column from the sel file, so the unique index # which is dependent on the order of the channels names['index'].append(ch+1) names['unit'].append(unit) names['name'].append(name) names['description'].append(description) names['label'].append(label) names['state'].append(state) names['type'].append(typ) names['comp'].append(comp) names['coord'].append(coord) names['elnr'].append(coord) names['nodenr'].append(coord) names['zrel'].append(coord) index[name] = ch return names, index def _unified_channel_names(self): """ Make certain channels independent from their index. The unified channel dictionary ch_dict holds consequently named channels as the key, and the all information is stored in the value as another dictionary. The ch_dict key/values pairs are structured differently for different type of channels. Currently supported channels are: For forcevec, momentvec, state commands: node numbers start with 0 at the root element numbers start with 1 at the root key: coord-bodyname-pos-sensortype-component global-tower-node-002-forcevec-z local-blade1-node-005-momentvec-z hub1-blade1-elem-011-zrel-1.00-state pos-z value: ch_dict[tag]['coord'] ch_dict[tag]['bodyname'] ch_dict[tag]['pos'] ch_dict[tag]['sensortype'] ch_dict[tag]['component'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the DLL's this is: key: DLL-dll_name-io-io_nr DLL-yaw_control-outvec-3 DLL-yaw_control-inpvec-1 value: ch_dict[tag]['dll_name'] ch_dict[tag]['io'] ch_dict[tag]['io_nr'] ch_dict[tag]['chi'] ch_dict[tag]['sensortag'] ch_dict[tag]['units'] For the bearings this is: key: bearing-bearing_name-output_type-units bearing-shaft_nacelle-angle_speed-rpm value: ch_dict[tag]['bearing_name'] ch_dict[tag]['output_type'] ch_dict[tag]['chi'] ch_dict[tag]['units'] For many of the aero sensors: 'Cl', 'Cd', 'Alfa', 'Vrel' key: sensortype-blade_nr-pos Cl-1-0.01 value: ch_dict[tag]['sensortype'] ch_dict[tag]['blade_nr'] ch_dict[tag]['pos'] ch_dict[tag]['chi'] ch_dict[tag]['units'] """ # save them in a dictionary, use the new coherent naming structure # as the key, and as value again a dict that hols all the different # classifications: (chi, channel nr), (coord, coord), ... self.ch_dict = dict() # some channel ID's are unique, use them ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power', 'Ae rot. thrust', 'Time', 'Azi 1']) ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa']) ch_aerogrid = set(['a_grid', 'am_grid']) # also safe as df # cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', # 'component', 'pos', 'coord', 'sensortype', 'radius', # 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll', # 'azimuth', 'flap_nr']) df_dict = {col: [] for col in self.cols} df_dict['unique_ch_name'] = [] # scan through all channels and see which can be converted # to sensible unified name for ch in range(self.Nch): items = self.ch_details[ch, 2].split(' ') # remove empty values in the list items = misc.remove_items(items, '') dll = False # be carefull, identify only on the starting characters, because # the signal tag can hold random text that in some cases might # trigger a false positive # ----------------------------------------------------------------- # check for all the unique channel descriptions if self.ch_details[ch,0].strip() in ch_unique: tag = self.ch_details[ch, 0].strip() channelinfo = {} channelinfo['units'] = self.ch_details[ch, 1] channelinfo['sensortag'] = self.ch_details[ch, 2] channelinfo['chi'] = ch # ----------------------------------------------------------------- # or in the long description: # 0 1 2 3 4 5 6 and up # MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT elif self.ch_details[ch, 2].startswith('MomentM'): coord = items[5] bodyname = items[1].replace('Mbdy:', '') # set nodenr to sortable way, include leading zeros # node numbers start with 0 at the root nodenr = '%03i' % int(items[3]) # skip the attached the component # sensortype = items[0][:-2] # or give the sensor type the same name as in HAWC2 sensortype = 'momentvec' component = items[0][-1:len(items[0])] # the tag only exists if defined if len(items) > 6: sensortag = ' '.join(items[6:]) else: sensortag = '' # and tag it pos = 'node-%s' % nodenr tagitems = (coord, bodyname, pos, sensortype, component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch, 1] # ----------------------------------------------------------------- # 0 1 2 3 4 5 6 7 and up # Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT elif self.ch_details[ch, 2].startswith('Force'): coord = items[6] bodyname = items[2].replace('Mbdy:', '') nodenr = '%03i' % int(items[4]) # skipe the attached the component # sensortype = items[0] # or give the sensor type the same name as in HAWC2 sensortype = 'forcevec' component = items[1][1] if len(items) > 7: sensortag = ' '.join(items[7:]) else: sensortag = '' # and tag it pos = 'node-%s' % nodenr tagitems = (coord, bodyname, pos, sensortype, component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch, 1] # ----------------------------------------------------------------- # 0 1 2 3 4 5 6 7 8 # State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade # 0 1 2 3 4 5 6 7 8 9+ # State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label # State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label elif self.ch_details[ch,2].startswith('State'): # or self.ch_details[ch,0].startswith('euler') \ # or self.ch_details[ch,0].startswith('ax') \ # or self.ch_details[ch,0].startswith('omega') \ # or self.ch_details[ch,0].startswith('proj'): coord = items[8] bodyname = items[3].replace('Mbdy:', '') # element numbers start with 1 at the root elementnr = '%03i' % int(items[5]) zrel = '%04.2f' % float(items[6].replace('Z-rel:', '')) # skip the attached the component #sensortype = ''.join(items[0:2]) # or give the sensor type the same name as in HAWC2 tmp = self.ch_details[ch, 0].split(' ') sensortype = tmp[0] if sensortype.startswith('State'): sensortype += ' ' + tmp[1] component = items[2] if len(items) > 8: sensortag = ' '.join(items[9:]) else: sensortag = '' # and tag it pos = 'elem-%s-zrel-%s' % (elementnr, zrel) tagitems = (coord, bodyname, pos, sensortype, component) tag = '%s-%s-%s-%s-%s' % tagitems # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['bodyname'] = bodyname channelinfo['pos'] = pos channelinfo['sensortype'] = sensortype channelinfo['component'] = component channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch, 1] # ----------------------------------------------------------------- # DLL CONTROL I/O # there are two scenario's on how the channel description is formed # the channel id is always the same though # id for all three cases: # DLL out 1: 3 # DLL inp 2: 3 # description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output) # 0 1 2 3 4+ # yaw_control outvec 3 yaw_c input reference angle # description case 2 ("dll inpvec 2 1" in htc output): # 0 1 2 3 4 5 6+ # DLL : 2 inpvec : 4 mgen hss # description case 3 # 0 1 2 4 # hawc_dll :echo outvec : 1 elif self.ch_details[ch, 0].startswith('DLL'): # case 3 if items[1][0] == ':echo': # hawc_dll named case (case 3) is polluted with colons items = self.ch_details[ch,2].replace(':', '') items = items.split(' ') items = misc.remove_items(items, '') dll = items[1] io = items[2] io_nr = items[3] tag = 'DLL-%s-%s-%s' % (dll, io, io_nr) sensortag = '' # case 2: no reference to dll name elif self.ch_details[ch,2].startswith('DLL'): dll = items[2] io = items[3] io_nr = items[5] sensortag = ' '.join(items[6:]) # and tag it tag = 'DLL-%s-%s-%s' % (dll,io,io_nr) # case 1: type2 dll name is given else: dll = items[0] io = items[1] io_nr = items[2] sensortag = ' '.join(items[3:]) tag = 'DLL-%s-%s-%s' % (dll, io, io_nr) # save all info in the dict channelinfo = {} channelinfo['dll'] = dll channelinfo['io'] = io channelinfo['io_nr'] = io_nr channelinfo['chi'] = ch channelinfo['sensortag'] = sensortag channelinfo['units'] = self.ch_details[ch, 1] # ----------------------------------------------------------------- # BEARING OUTPUS # bea1 angle_speed rpm shaft_nacelle angle speed elif self.ch_details[ch, 0].startswith('bea'): output_type = self.ch_details[ch, 0].split(' ')[1] bearing_name = items[0] units = self.ch_details[ch, 1] # there is no label option for the bearing output # and tag it tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units) # save all info in the dict channelinfo = {} channelinfo['bearing_name'] = bearing_name channelinfo['output_type'] = output_type channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc # Cl, R= 0.5 deg Cl of blade 1 at radius 0.49 # Azi 1 deg Azimuth of blade 1 elif self.ch_details[ch, 0].split(',')[0] in ch_aero: dscr_list = self.ch_details[ch, 2].split(' ') dscr_list = misc.remove_items(dscr_list, '') sensortype = self.ch_details[ch, 0].split(',')[0] radius = dscr_list[-1] # is this always valid? blade_nr = self.ch_details[ch, 2].split('blade ')[1][0] # sometimes the units for aero sensors are wrong! units = self.ch_details[ch, 1] # there is no label option # and tag it tag = '%s-%s-%s' % (sensortype, blade_nr, radius) # save all info in the dict channelinfo = {} channelinfo['sensortype'] = sensortype channelinfo['radius'] = float(radius) channelinfo['blade_nr'] = int(blade_nr) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # for the induction grid over the rotor # a_grid, azi 0.00 r 1.74 elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid: items = self.ch_details[ch, 0].split(',') sensortype = items[0] items2 = items[1].split(' ') items2 = misc.remove_items(items2, '') azi = items2[1] radius = items2[3] units = self.ch_details[ch, 1] # and tag it tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius) # save all info in the dict channelinfo = {} channelinfo['sensortype'] = sensortype channelinfo['radius'] = float(radius) channelinfo['azimuth'] = float(azi) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # INDUCTION AT THE BLADE # 0: Induc. Vz, rpco, R= 1.4 # 1: m/s # 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo. # Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo. # Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo. # Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo. # Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo. elif self.ch_details[ch, 0].strip()[:5] == 'Induc': items = self.ch_details[ch, 2].split(' ') items = misc.remove_items(items, '') blade_nr = int(items[5]) radius = float(items[8].replace(',', '')) items = self.ch_details[ch, 0].split(',') coord = items[1].strip() component = items[0][-2:] units = self.ch_details[ch, 1] # and tag it rpl = (coord, blade_nr, component, radius) tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl # save all info in the dict channelinfo = {} channelinfo['blade_nr'] = blade_nr channelinfo['sensortype'] = 'induction' channelinfo['radius'] = radius channelinfo['coord'] = coord channelinfo['component'] = component channelinfo['units'] = units channelinfo['chi'] = ch # TODO: wind speed # some spaces have been trimmed here # WSP gl. coo.,Vy m/s # // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31 # WSP gl. coo.,Vdir_hor deg # Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31 # ----------------------------------------------------------------- # WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00 elif self.ch_details[ch, 2].startswith('Water'): units = self.ch_details[ch, 1] # but remove the comma x = items[-2][:-1] y = items[-1] # and tag it tag = 'watersurface-global-%s-%s' % (x, y) # save all info in the dict channelinfo = {} channelinfo['coord'] = 'global' channelinfo['pos'] = (float(x), float(y)) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # WIND SPEED # WSP gl. coo.,Vx elif self.ch_details[ch, 0].startswith('WSP gl.'): units = self.ch_details[ch, 1] direction = self.ch_details[ch, 0].split(',')[1] tmp = self.ch_details[ch, 2].split('pos')[1] x, y, z = tmp.split(',') x, y, z = x.strip(), y.strip(), z.strip() # and tag it tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z) # save all info in the dict channelinfo = {} channelinfo['coord'] = 'global' channelinfo['pos'] = (x, y, z) channelinfo['units'] = units channelinfo['chi'] = ch # WIND SPEED AT BLADE # 0: WSP Vx, glco, R= 61.5 # 2: Wind speed Vx of blade 1 at radius 61.52, global coo. elif self.ch_details[ch, 0].startswith('WSP V'): units = self.ch_details[ch, 1].strip() direction = self.ch_details[ch, 0].split(' ')[1].strip() blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2] radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0] coord = self.ch_details[ch, 2].split(',')[1].strip() radius = radius.strip() blade_nr = blade_nr.strip() # and tag it rpl = (direction, blade_nr, radius, coord) tag = 'wsp-blade-%s-%s-%s-%s' % rpl # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['direction'] = direction channelinfo['blade_nr'] = int(blade_nr) channelinfo['radius'] = float(radius) channelinfo['units'] = units channelinfo['chi'] = ch # FLAP ANGLE # 2: Flap angle for blade 3 flap number 1 elif self.ch_details[ch, 0][:7] == 'setbeta': units = self.ch_details[ch, 1].strip() blade_nr = self.ch_details[ch, 2].split('blade')[1].strip() blade_nr = blade_nr.split(' ')[0].strip() flap_nr = self.ch_details[ch, 2].split(' ')[-1].strip() radius = radius.strip() blade_nr = blade_nr.strip() # and tag it tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr) # save all info in the dict channelinfo = {} channelinfo['coord'] = coord channelinfo['flap_nr'] = int(flap_nr) channelinfo['blade_nr'] = int(blade_nr) channelinfo['units'] = units channelinfo['chi'] = ch # ----------------------------------------------------------------- # ignore all the other cases we don't know how to deal with else: # if we get here, we don't have support yet for that sensor # and hence we can't save it. Continue with next channel continue # ----------------------------------------------------------------- # ignore if we have a non unique tag if tag in self.ch_dict: jj = 1 while True: tag_new = tag + '_v%i' % jj if tag_new in self.ch_dict: jj += 1 else: tag = tag_new break # msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag # logging.warn(msg) # else: self.ch_dict[tag] = copy.copy(channelinfo) # ----------------------------------------------------------------- # save in for DataFrame format cols_ch = set(channelinfo.keys()) for col in cols_ch: df_dict[col].append(channelinfo[col]) # the remainder columns we have not had yet. Fill in blank for col in (self.cols - cols_ch): df_dict[col].append('') df_dict['unique_ch_name'].append(tag) self.ch_df = pd.DataFrame(df_dict) self.ch_df.set_index('chi', inplace=True) def _ch_dict2df(self): """ Create a DataFrame version of the ch_dict, and the chi columns is set as the index """ # identify all the different columns cols = set() for ch_name, channelinfo in self.ch_dict.items(): cols.update(set(channelinfo.keys())) df_dict = {col: [] for col in cols} df_dict['unique_ch_name'] = [] for ch_name, channelinfo in self.ch_dict.items(): cols_ch = set(channelinfo.keys()) for col in cols_ch: df_dict[col].append(channelinfo[col]) # the remainder columns we have not had yet. Fill in blank for col in (cols - cols_ch): df_dict[col].append('') df_dict['unique_ch_name'].append(ch_name) self.ch_df = pd.DataFrame(df_dict) self.ch_df.set_index('chi', inplace=True) def _data_window(self, nr_rev=None, time=None): """ Based on a time interval, create a proper slice object ====================================================== The window will start at zero and ends with the covered time range of the time input. Paramters --------- nr_rev : int, default=None NOT IMPLEMENTED YET time : list, default=None time = [time start, time stop] Returns ------- slice_ window zoomtype time_range time_range = [0, time[1]] """ # ------------------------------------------------- # determine zome range if necesary # ------------------------------------------------- time_range = None if nr_rev: raise NotImplementedError # input is a number of revolutions, get RPM and sample rate to # calculate the required range # TODO: automatich detection of RPM channel! time_range = nr_rev/(self.rpm_mean/60.) # convert to indices instead of seconds i_range = int(self.Freq*time_range) window = [0, time_range] # in case the first datapoint is not at 0 seconds i_zero = int(self.sig[0, 0]*self.Freq) slice_ = np.r_[i_zero:i_range+i_zero] zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev' elif time.any(): time_range = time[1] - time[0] i_start = int(time[0]*self.Freq) i_end = int(time[1]*self.Freq) slice_ = np.r_[i_start:i_end] window = [time[0], time[1]] zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1]) return slice_, window, zoomtype, time_range # TODO: general signal method, this is not HAWC2 specific, move out def calc_stats(self, sig, i0=0, i1=None): stats = {} # calculate the statistics values: stats['max'] = sig[i0:i1, :].max(axis=0) stats['min'] = sig[i0:i1, :].min(axis=0) stats['mean'] = sig[i0:i1, :].mean(axis=0) stats['std'] = sig[i0:i1, :].std(axis=0) stats['range'] = stats['max'] - stats['min'] stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0) stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0)) stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0) return stats def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all', m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46): """Calculate statistics and equivalent loads for the current loaded signal. Parameters ---------- i0 : int, default=0 i1 : int, default=None channels : list, default='all' all channels are selected if set to 'all', otherwise define a list using the unique channel defintions. neq : int, default=1 no_bins : int, default=46 Return ------ statsdel : pd.DataFrame Pandas DataFrame with the statistical parameters and the different fatigue coefficients as columns, and channels as rows. As index the unique channel name is used. """ stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int'] if statchans == 'all': statchans = self.ch_df['unique_ch_name'].tolist() statchis = self.ch_df['unique_ch_name'].index.values else: sel = self.ch_df['unique_ch_name'] statchis = self.ch_df[sel.isin(statchans)].index.values if delchans == 'all': delchans = self.ch_df['unique_ch_name'].tolist() delchis = self.ch_df.index.values else: sel = self.ch_df['unique_ch_name'] delchis = self.ch_df[sel.isin(delchans)].index.values # delchans has to be a subset of statchans! if len(set(delchans) - set(statchans)) > 0: raise ValueError('delchans has to be a subset of statchans') tmp = np.ndarray((len(statchans), len(stats+m))) tmp[:,:] = np.nan m_cols = ['m=%i' % m_ for m_ in m] statsdel = pd.DataFrame(tmp, columns=stats+m_cols) statsdel.index = statchans datasel = self.sig[i0:i1,statchis] time = self.sig[i0:i1,0] statsdel['max'] = datasel.max(axis=0) statsdel['min'] = datasel.min(axis=0) statsdel['mean'] = datasel.mean(axis=0) statsdel['std'] = datasel.std(axis=0) statsdel['range'] = statsdel['max'] - statsdel['min'] statsdel['absmax'] = np.abs(datasel).max(axis=0) statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0)) statsdel['int'] = integrate.trapz(datasel, x=time, axis=0) statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0) if neq is None: neq = self.sig[-1,0] - self.sig[0,0] for chi, chan in zip(delchis, delchans): signal = self.sig[i0:i1,chi] eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m) statsdel.loc[chan][m_cols] = eq return statsdel # TODO: general signal method, this is not HAWC2 specific, move out def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1): """ Parameters ---------- signal: 1D array One dimentional array containing the signal. no_bins: int Number of bins for the binning of the amplitudes. m: list Values of the slope of the SN curve. neq: int Number of equivalent cycles Returns ------- eq: list Damage equivalent loads for each m value. """ return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0] def blade_deflection(self): """ """ # select all the y deflection channels db = misc.DictDB(self.ch_dict) db.search({'sensortype': 'state pos', 'component': 'z'}) # sort the keys and save the mean values to an array/list chiz, zvals = [], [] for key in sorted(db.dict_sel.keys()): zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean()) chiz.append(db.dict_sel[key]['chi']) db.search({'sensortype': 'state pos', 'component': 'y'}) # sort the keys and save the mean values to an array/list chiy, yvals = [], [] for key in sorted(db.dict_sel.keys()): yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean()) chiy.append(db.dict_sel[key]['chi']) return np.array(zvals), np.array(yvals) def save_chan_names(self, fname): """Save unique channel names to text file. """ channels = self.ch_df.ch_name.values channels.sort() np.savetxt(fname, channels, fmt='%-100s') def save_channel_info(self, fname): """Save all channel info: unique naming + HAWC2 description from *.sel. """ p1 = self.ch_df.copy() # but ignore the units column, we already have that p2 = pd.DataFrame(self.ch_details, columns=['Description1', 'units', 'Description2']) # merge on the index tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True) tmp.to_excel(fname) # for a fixed-with text format instead of csv # header = ''.join(['%100s' % k for k in tmp.columns]) # header = ' windspeed' + header # np.savetxt(fname, tmp.to_records(), header=header, # fmt='% 01.06e ') return tmp def load_chan_names(self, fname): dtype = np.dtype('U100') return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist() def save_csv(self, fname, fmt='%.18e', delimiter=','): """ Save to csv and use the unified channel names as columns """ map_sorting = {} # first, sort on channel index for ch_key, ch in self.ch_dict.items(): map_sorting[ch['chi']] = ch_key header = [] # not all channels might be present...iterate again over map_sorting for chi in map_sorting: try: sensortag = self.ch_dict[map_sorting[chi]]['sensortag'] header.append(map_sorting[chi] + ' // ' + sensortag) except: header.append(map_sorting[chi]) # and save print('saving...', end='') np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt, delimiter=delimiter, header=delimiter.join(header)) print(fname) def save_df(self, fname): """ Save the HAWC2 data and sel file in a DataFrame that contains all the data, and all the channel information (the one from the sel file and the parsed from this function) """ self.sig self.ch_details self.ch_dict def ReadOutputAtTime(fname): """Distributed blade loading as generated by the HAWC2 output_at_time command. From HAWC2 12.3-beta and onwards, there are 7 header columns, earlier version only have 3. Parameters ---------- fname : str header_lnr : int, default=3 Line number of the header (column names) (1-based counting). """ # data = pd.read_fwf(fname, skiprows=3, header=None) # pd.read_table(fname, sep=' ', skiprows=3) # data.index.names = cols # because the formatting is really weird, we need to sanatize it a bit with opent(fname, 'r') as f: # read the header from line 3 for k in range(7): line = f.readline() if line[0:12].lower().replace('#', '').strip() == 'radius_s': header_lnr = k + 1 break header = line.replace('\r', '').replace('\n', '') cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]] data = np.loadtxt(fname, skiprows=header_lnr) return pd.DataFrame(data, columns=cols) def ReadEigenBody(fname, debug=False): """ Read HAWC2 body eigenalysis result file ======================================= Parameters ---------- file_path : str file_name : str Returns ------- results : DataFrame Columns: body, Fd_hz, Fn_hz, log_decr_pct """ # Body data for body number : 3 with the name :nacelle # Results: fd [Hz] fn [Hz] log.decr [%] # Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02 FILE = opent(fname) lines = FILE.readlines() FILE.close() df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []} for i, line in enumerate(lines): if debug: print('line nr: %5i' % i) # identify for which body we will read the data if line[:25] == 'Body data for body number': body = line.split(':')[2].rstrip().lstrip() # remove any annoying characters body = body.replace('\n', '').replace('\r', '') if debug: print('modes for body: %s' % body) # identify mode number and read the eigenfrequencies elif line[:8] == 'Mode nr:': linelist = line.replace('\n', '').replace('\r', '').split(':') # modenr = linelist[1].rstrip().lstrip() # text after Mode nr can be empty try: eigenmodes = linelist[2].rstrip().lstrip().split(' ') except IndexError: eigenmodes = ['0', '0', '0'] if debug: print(eigenmodes) # in case we have more than 3, remove all the empty ones # this can happen when there are NaN values if not len(eigenmodes) == 3: eigenmodes = linelist[2].rstrip().lstrip().split(' ') eigmod = [] for k in eigenmodes: if len(k) > 1: eigmod.append(k) # eigenmodes = eigmod else: eigmod = eigenmodes # remove any trailing spaces for each element for k in range(len(eigmod)): eigmod[k] = float(eigmod[k]) #.lstrip().rstrip() df_dict['body'].append(body) df_dict['Fd_hz'].append(eigmod[0]) df_dict['Fn_hz'].append(eigmod[1]) df_dict['log_decr_pct'].append(eigmod[2]) return pd.DataFrame(df_dict) def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500): """ Read HAWC2 structure eigenalysis result file ============================================ The file looks as follows: #0 Version ID : HAWC2MB 11.3 #1 ___________________________________________________________________ #2 Structure eigenanalysis output #3 ___________________________________________________________________ #4 Time : 13:46:59 #5 Date : 28:11.2012 #6 ___________________________________________________________________ #7 Results: fd [Hz] fn [Hz] log.decr [%] #8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00 #... #302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02 Parameters ---------- file_path : str file_name : str debug : boolean, default=False max_modes : int Stop evaluating the result after max_modes number of modes have been identified Returns ------- modes_arr : ndarray(3,n) An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping decrement [%] for n different structural eigenmodes """ # 0 Version ID : HAWC2MB 11.3 # 1 ___________________________________________________________________ # 2 Structure eigenanalysis output # 3 ___________________________________________________________________ # 4 Time : 13:46:59 # 5 Date : 28:11.2012 # 6 ___________________________________________________________________ # 7 Results: fd [Hz] fn [Hz] log.decr [%] # 8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00 # Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02 FILE = opent(os.path.join(file_path, file_name)) lines = FILE.readlines() FILE.close() header_lines = 8 # we now the number of modes by having the number of lines nrofmodes = len(lines) - header_lines modes_arr = np.ndarray((3, nrofmodes)) for i, line in enumerate(lines): if i > max_modes: # cut off the unused rest modes_arr = modes_arr[:, :i] break # ignore the header if i < header_lines: continue # split up mode nr from the rest parts = line.split(':') # modenr = int(parts[1]) # get fd, fn and damping, but remove all empty items on the list modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '') return modes_arr class UserWind(object): """ """ def __init__(self): pass def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3, nr_vert=20, h_ME=500.0, io=None, wdir=None): """ Parameters ---------- z_h : float Hub height r_blade_tip : float Blade tip radius a_phi : float, default=None :math:`a_{\\varphi} \\approx 0.5` parameter for the modified Ekman veer distribution. Values vary between -1.2 and 0.5. shear_exp : float, default=None nr_vert : int, default=3 nr_hor : int, default=20 h_ME : float, default=500 Modified Ekman parameter. Take roughly 500 for off shore sites, 1000 for on shore sites. io : str or io buffer, default=None When specified, the HAWC2 user defined shear input file will be written. wdir : float, default=None A constant veer angle, or yaw angle. Equivalent to setting the wind direction. Angle in degrees. Returns ------- uu, vv, ww, xx, zz """ x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert, nr_hor=nr_hor) if a_phi is not None: phi_rad = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi) assert len(phi_rad) == nr_vert else: nr_vert = len(z) phi_rad = np.zeros((nr_vert,)) # add any yaw error on top of if wdir is not None: # because wdir cw positive, and phi veer ccw positive phi_rad -= (wdir*np.pi/180.0) u, v, w = self.decompose_veer(phi_rad, nr_hor) # when no shear is defined if shear_exp is None: uu = u vv = v ww = w else: # scale the shear on top of the veer shear = WindProfiles.powerlaw(z, z_h, shear_exp) uu = u*shear[:,np.newaxis] vv = v*shear[:,np.newaxis] ww = w*shear[:,np.newaxis] # and write to a file if isinstance(io, str): with open(io, 'wb') as fid: fid = self.write(fid, uu, vv, ww, x, z) self.fid =None elif io is not None: io = self.write(io, uu, vv, ww, x, z) self.fid = io return uu, vv, ww, x, z def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20): """ Utility to create the coordinates of the wind field based on hub heigth and blade length. Add 15% to r_blade_tip to make sure horizontal edges are defined wide enough. """ # take 15% extra space after the blade tip z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert) # along the horizontal, coordinates with 0 at the rotor center x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor) return x, z def deltaphi2aphi(self, d_phi, z_h, r_blade_tip, h_ME=500.0): """For a given `\\Delta \\varphi` over the rotor diameter, estimate the corresponding `a_{\\varphi}`. Parameters ---------- `\\Delta \\varphi` : ndarray or float Veer angle difference over the rotor plane from lowest to highest blade tip position. z_h : float Hub height in meters. r_blade_tip : float Blade tip radius/length. h_ME : float, default=500.0 Modified Ekman parameter. For on shore, :math:`h_{ME} \\approx 1000`, for off-shore, :math:`h_{ME} \\approx 500` Returns ------- `a_{\\varphi}` : ndarray or float """ t1 = r_blade_tip * 2.0 * np.exp(-z_h/(h_ME)) a_phi = d_phi * np.sqrt(h_ME*z_h) / t1 return a_phi def deltaphi2aphi_opt(self, deltaphi, z, z_h, r_blade_tip, h_ME): """ convert delta_phi over a given interval z to a_phi using scipy.optimize.fsolve on veer_ekman_mod. Parameters ---------- deltaphi : float Desired delta phi in rad over interval z[0] at bottom to z[1] at the top. """ def func(a_phi, z, z_h, h_ME, deltaphi_target): phis = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi) return np.abs(deltaphi_target - (phis[1] - phis[0])) args = (z, z_h, h_ME, deltaphi) return sp.optimize.fsolve(func, [0], args=args)[0] def decompose_veer(self, phi_rad, nr_hor): """ Convert a veer angle into u, v, and w components, ready for the HAWC2 user defined veer input file. nr_vert refers to the number of vertical grid points. Paramters --------- phi_rad : ndarray(nr_vert) veer angle in radians as function of height nr_hor : int Number of horizontal grid points Returns ------- u : ndarray(nr_hor, nr_vert) v : ndarray(nr_hor, nr_vert) w : ndarray(nr_hor, nr_vert) """ nr_vert = len(phi_rad) tan_phi = np.tan(phi_rad) # convert veer angles to veer components in v, u. Make sure the # normalized wind speed remains 1! # u = sympy.Symbol('u') # v = sympy.Symbol('v') # tan_phi = sympy.Symbol('tan_phi') # eq1 = u**2.0 + v**2.0 - 1.0 # eq2 = (tan_phi*u/v) - 1.0 # sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True) # # proposed solution is: # u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi # v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0)) # # but that gives the sign switch wrong, simplify/rewrite to: u = np.sqrt(1.0/(tan_phi**2 + 1.0)) v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi # verify they are actually the same but the sign: # assert np.allclose(np.abs(u), np.abs(u2)) # assert np.allclose(np.abs(v), np.abs(v2)) u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :] v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :] w_full = np.zeros((nr_vert, nr_hor)) return u_full, v_full, w_full def read(self, fname): """ Read a user defined shear input file as used for HAWC2. Returns ------- u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg """ # read the header with opent(fname) as f: for i, line in enumerate(f.readlines()): if line.strip()[0] != '#': nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '') nr_hor, nr_vert = int(nr_v), int(nr_w) i_header = i break # u,v and w components on 2D grid tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#', max_rows=nr_vert*3) if not tmp.shape == (nr_vert*3, nr_hor): raise AssertionError('user defined shear input file inconsistent') v_comp = tmp[:nr_vert,:] u_comp = tmp[nr_vert:nr_vert*2,:] w_comp = tmp[nr_vert*2:nr_vert*3,:] # coordinates of the 2D grid tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2, max_rows=nr_hor+nr_vert) if not tmp.shape == (nr_vert+nr_hor,): raise AssertionError('user defined shear input file inconsistent') v_coord = tmp[:nr_hor] w_coord = tmp[nr_hor:] phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg def write(self, fid, u, v, w, v_coord, w_coord, fmt_uvw='% 08.05f', fmt_coord='% 8.02f'): """Write a user defined shear input file for HAWC2. """ nr_hor = len(v_coord) nr_vert = len(w_coord) try: assert u.shape == v.shape assert u.shape == w.shape assert u.shape[0] == nr_vert assert u.shape[1] == nr_hor except AssertionError: raise ValueError('u, v, w shapes should be consistent with ' 'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, ' 'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert)) fid.write(b'# User defined shear file\n') tmp = '%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert) fid.write(tmp.encode()) h1 = 'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns' fid.write(('# v component, %s\n' % h1).encode()) np.savetxt(fid, v, fmt=fmt_uvw, delimiter=' ') fid.write(('# u component, %s\n' % h1).encode()) np.savetxt(fid, u, fmt=fmt_uvw, delimiter=' ') fid.write(('# w component, %s\n' % h1).encode()) np.savetxt(fid, w, fmt=fmt_uvw, delimiter=' ') h2 = '# v coordinates (along the horizontal, nr_hor, 0 rotor center)' fid.write(('%s\n' % h2).encode()) np.savetxt(fid, v_coord.reshape((v_coord.size, 1)), fmt=fmt_coord) h3 = '# w coordinates (zero is at ground level, height, nr_hor)' fid.write(('%s\n' % h3).encode()) np.savetxt(fid, w_coord.reshape((w_coord.size, 1)), fmt=fmt_coord) return fid class WindProfiles(object): def logarithmic(z, z_ref, r_0): return np.log10(z/r_0)/np.log10(z_ref/r_0) def powerlaw(z, z_ref, a): profile = np.power(z/z_ref, a) # when a negative, make sure we return zero and not inf profile[np.isinf(profile)] = 0.0 return profile def veer_ekman_mod(z, z_h, h_ME=500.0, a_phi=0.5): """ Modified Ekman veer profile, as defined by Mark C. Kelly in email on 10 October 2014 15:10 (RE: veer profile) .. math:: \\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi} e^{-\sqrt{z_H/h_{ME}}} \\frac{z-z_H}{\sqrt{z_H*h_{ME}}} \\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}} - \\frac{z-z_H}{4z_H} \\right) where: :math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}` and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter, and :math:`\\kappa = 0.41` as the von Karman constant, and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity. For on shore, :math:`h_{ME} \\approx 1000`, for off-shore, :math:`h_{ME} \\approx 500` :math:`a_{\\varphi} \\approx 0.5` Parameters ---------- z : ndarray(n) z-coordinates (height) of the grid on which the veer angle should be calculated. z_h : float Hub height in meters. :math:`a_{\\varphi}` : default=0.5 Parameter for the modified Ekman veer distribution. Value varies between -1.2 and 0.5. Returns ------- phi_rad : ndarray Veer angle in radians as function of z. """ t1 = np.exp(-math.sqrt(z_h / h_ME)) t2 = (z - z_h) / math.sqrt(z_h * h_ME) t3 = (1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h)) return a_phi * t1 * t2 * t3 class Turbulence(object): def __init__(self): pass def read_hawc2(self, fpath, shape): """ Read the HAWC2 turbulence format """ fid = open(fpath, 'rb') tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2]) turb = np.reshape(tmp, shape) return turb def read_bladed(self, fpath, basename): fid = open(fpath + basename + '.wnd', 'rb') R1 = struct.unpack('h', fid.read(2))[0] R2 = struct.unpack('h', fid.read(2))[0] turb = struct.unpack('i', fid.read(4))[0] lat = struct.unpack('f', fid.read(4))[0] rough = struct.unpack('f', fid.read(4))[0] refh = struct.unpack('f', fid.read(4))[0] longti = struct.unpack('f', fid.read(4))[0] latti = struct.unpack('f', fid.read(4))[0] vertti = struct.unpack('f', fid.read(4))[0] dv = struct.unpack('f', fid.read(4))[0] dw = struct.unpack('f', fid.read(4))[0] du = struct.unpack('f', fid.read(4))[0] halfalong = struct.unpack('i', fid.read(4))[0] mean_ws = struct.unpack('f', fid.read(4))[0] VertLongComp = struct.unpack('f', fid.read(4))[0] LatLongComp = struct.unpack('f', fid.read(4))[0] LongLongComp = struct.unpack('f', fid.read(4))[0] Int = struct.unpack('i', fid.read(4))[0] seed = struct.unpack('i', fid.read(4))[0] VertGpNum = struct.unpack('i', fid.read(4))[0] LatGpNum = struct.unpack('i', fid.read(4))[0] VertLatComp = struct.unpack('f', fid.read(4))[0] LatLatComp = struct.unpack('f', fid.read(4))[0] LongLatComp = struct.unpack('f', fid.read(4))[0] VertVertComp = struct.unpack('f', fid.read(4))[0] LatVertComp = struct.unpack('f', fid.read(4))[0] LongVertComp = struct.unpack('f', fid.read(4))[0] points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3) fid.close() return points def convert2bladed(self, fpath, basename, shape=(4096,32,32)): """ Convert turbulence box to BLADED format """ u = self.read_hawc2(fpath + basename + 'u.bin', shape) v = self.read_hawc2(fpath + basename + 'v.bin', shape) w = self.read_hawc2(fpath + basename + 'w.bin', shape) # mean velocity components at the center of the box v1, v2 = (shape[1]/2)-1, shape[1]/2 w1, w2 = (shape[2]/2)-1, shape[2]/2 ucent = (u[:, v1, w1] + u[:, v1, w2] + u[:, v2, w1] + u[:, v2, w2]) / 4.0 vcent = (v[:, v1, w1] + v[:, v1, w2] + v[:, v2, w1] + v[:, v2, w2]) / 4.0 wcent = (w[:, v1, w1] + w[:, v1, w2] + w[:, v2, w1] + w[:, v2, w2]) / 4.0 # FIXME: where is this range 351:7374 coming from?? The original script # considered a box of lenght 8192 umean = np.mean(ucent[351:7374]) vmean = np.mean(vcent[351:7374]) wmean = np.mean(wcent[351:7374]) ustd = np.std(ucent[351:7374]) vstd = np.std(vcent[351:7374]) wstd = np.std(wcent[351:7374]) # gives a slight different outcome, but that is that significant? # umean = np.mean(u[351:7374,15:17,15:17]) # vmean = np.mean(v[351:7374,15:17,15:17]) # wmean = np.mean(w[351:7374,15:17,15:17]) # this is wrong since we want the std on the center point # ustd = np.std(u[351:7374,15:17,15:17]) # vstd = np.std(v[351:7374,15:17,15:17]) # wstd = np.std(w[351:7374,15:17,15:17]) iu = np.zeros(shape) iv = np.zeros(shape) iw = np.zeros(shape) iu[:, :, :] = (u - umean)/ustd*1000.0 iv[:, :, :] = (v - vmean)/vstd*1000.0 iw[:, :, :] = (w - wmean)/wstd*1000.0 # because MATLAB and Octave do a round when casting from float to int, # and Python does a floor, we have to round first np.around(iu, decimals=0, out=iu) np.around(iv, decimals=0, out=iv) np.around(iw, decimals=0, out=iw) return iu.astype(np.int16), iv.astype(np.int16), iw.astype(np.int16) def write_bladed(self, fpath, basename, shape): """ Write turbulence BLADED file """ # TODO: get these parameters from a HAWC2 input file seed = 6 mean_ws = 11.4 turb = 3 R1 = -99 R2 = 4 du = 0.974121094 dv = 4.6875 dw = 4.6875 longti = 14 latti = 9.8 vertti = 7 iu, iv, iw = self.convert2bladed(fpath, basename, shape=shape) fid = open(fpath + basename + '.wnd', 'wb') fid.write(struct.pack('h', R1)) # R1 fid.write(struct.pack('h', R2)) # R2 fid.write(struct.pack('i', turb)) # Turb fid.write(struct.pack('f', 999)) # Lat fid.write(struct.pack('f', 999)) # rough fid.write(struct.pack('f', 999)) # refh fid.write(struct.pack('f', longti)) # LongTi fid.write(struct.pack('f', latti)) # LatTi fid.write(struct.pack('f', vertti)) # VertTi fid.write(struct.pack('f', dv)) # VertGpSpace fid.write(struct.pack('f', dw)) # LatGpSpace fid.write(struct.pack('f', du)) # LongGpSpace fid.write(struct.pack('i', shape[0]/2)) # HalfAlong fid.write(struct.pack('f', mean_ws)) # meanWS fid.write(struct.pack('f', 999.)) # VertLongComp fid.write(struct.pack('f', 999.)) # LatLongComp fid.write(struct.pack('f', 999.)) # LongLongComp fid.write(struct.pack('i', 999)) # Int fid.write(struct.pack('i', seed)) # Seed fid.write(struct.pack('i', shape[1])) # VertGpNum fid.write(struct.pack('i', shape[2])) # LatGpNum fid.write(struct.pack('f', 999)) # VertLatComp fid.write(struct.pack('f', 999)) # LatLatComp fid.write(struct.pack('f', 999)) # LongLatComp fid.write(struct.pack('f', 999)) # VertVertComp fid.write(struct.pack('f', 999)) # LatVertComp fid.write(struct.pack('f', 999)) # LongVertComp # fid.flush() # bladed2 = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16) # for i in xrange(shape[0]): # for k in xrange(shape[1]): # for j in xrange(shape[2]): # fid.write(struct.pack('i', iu[i, shape[1]-j-1, k])) # fid.write(struct.pack('i', iv[i, shape[1]-j-1, k])) # fid.write(struct.pack('i', iw[i, shape[1]-j-1, k])) # bladed2[i,k,j,0] = iu[i, shape[1]-j-1, k] # bladed2[i,k,j,1] = iv[i, shape[1]-j-1, k] # bladed2[i,k,j,2] = iw[i, shape[1]-j-1, k] # re-arrange array for bladed format bladed = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16) bladed[:, :, :, 0] = iu[:, ::-1, :] bladed[:, :, :, 1] = iv[:, ::-1, :] bladed[:, :, :, 2] = iw[:, ::-1, :] bladed_swap_view = bladed.swapaxes(1,2) bladed_swap_view.tofile(fid, format='%int16') fid.flush() fid.close() class Bladed(object): def __init__(self): """ Some BLADED results I have seen are just weird text files. Convert them to a more convienent format. path/to/file channel 1 description col a name/unit col b name/unit a0 b0 a1 b1 ... path/to/file channel 2 description col a name/unit col b name/unit ... """ pass def infer_format(self, lines): """ Figure out how many channels and time steps are included """ count = 1 for line in lines[1:]: if line == lines[0]: break count += 1 iters = count - 3 chans = len(lines) / (iters + 3) return int(chans), int(iters) def read(self, fname, chans=None, iters=None, enc='cp1252'): """ Parameters ---------- fname : str chans : int, default=None iters : int, default=None enc : str, default='cp1252' character encoding of the source file. Usually BLADED is used on windows so Western-European windows encoding is a safe bet. """ with codecs.opent(fname, 'r', enc) as f: lines = f.readlines() nrl = len(lines) if chans is None and iters is None: chans, iters = self.infer_format(lines) if iters is not None: chans = int(nrl / (iters + 3)) if chans is not None: iters = int((nrl / chans) - 3) # file_head = [ [k[:-2],0] for k in lines[0:nrl:iters+3] ] # chan_head = [ [k[:-2],0] for k in lines[1:nrl:iters+3] ] # cols_head = [ k.split('\t')[:2] for k in lines[2:nrl:iters+3] ] data = {} for k in range(chans): # take the column header from the 3 comment line, but head = lines[2 + (3 + iters)*k][:-2].split('\t')[1].encode('utf-8') i0 = 3 + (3 + iters)*k i1 = i0 + iters data[head] = np.array([k[:-2].split('\t')[1] for k in lines[i0:i1:1]]) data[head] = data[head].astype(np.float64) time = np.array([k[:-2].split('\t')[0] for k in lines[i0:i1:1]]) df = pd.DataFrame(data, index=time.astype(np.float64)) df.index.name = lines[0][:-2] return df if __name__ == '__main__': pass