# -*- coding: utf-8 -*- """ Created on Thu Sep 27 11:09:04 2012 Library for general stuff @author: dave """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import range from builtins import dict from builtins import int from io import open from builtins import str from future import standard_library standard_library.install_aliases() from builtins import object import os import sys import shutil import unittest import pickle import re import numpy as np import scipy as sp from scipy import optimize as opt from scipy import stats from scipy.interpolate import griddata as interp try: from matplotlib import pyplot as plt except: pass import pandas as pd class Logger(object): """The Logger class can be used to redirect standard output to a log file. Usage: Create a Logger object and redirect standard output to the Logger object. For example: output = Logger(file_handle, True) import sys sys.stdout = output """ def __init__(self, logFile, echo): """Arguments: logFile a file object that is available for writing echo Boolean. If True, output is sent to standard output in addition to the log file. """ import sys self.out = sys.stdout self.logFile = logFile self.echo = echo def write(self, s): """Required method that replaces stdout. You don't have to call this directly--all print statements will be redirected here.""" self.logFile.write(s) if self.echo: self.out.write(s) self.logFile.flush() def path_split_dirs(path): """ Return a list with dirnames. Ignore any leading "./" """ dirs = path.split(os.path.sep) if dirs[0] == '.': dirs.pop(0) return dirs def print_both(f, text, end='\n'): """ Print both to a file and the console """ print(text) if isinstance(f, file): f.write(text + end) def unique(s): """ SOURCE: http://code.activestate.com/recipes/52560/ AUTHOR: Tim Peters Return a list of the elements in s, but without duplicates. For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3], unique("abcabc") some permutation of ["a", "b", "c"], and unique(([1, 2], [2, 3], [1, 2])) some permutation of [[2, 3], [1, 2]]. For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time. If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn't raise TypeError it's assumed that they do enjoy a total ordering. Then unique() will usually work in O(N*log2(N)) time. If that's not possible either, the sequence elements must support equality-testing. Then unique() will usually work in quadratic time. """ n = len(s) if n == 0: return [] # Try using a dict first, as that's the fastest and will usually # work. If it doesn't work, it will usually fail quickly, so it # usually doesn't cost much to *try* it. It requires that all the # sequence elements be hashable, and support equality comparison. u = {} try: for x in s: u[x] = 1 except TypeError: del u # move on to the next method else: return list(u.keys()) # We can't hash all the elements. Second fastest is to sort, # which brings the equal elements together; then duplicates are # easy to weed out in a single pass. # NOTE: Python's list.sort() was designed to be efficient in the # presence of many duplicate elements. This isn't true of all # sort functions in all languages or libraries, so this approach # is more effective in Python than it may be elsewhere. try: t = list(s) t.sort() except TypeError: del t # move on to the next method else: assert n > 0 last = t[0] lasti = i = 1 while i < n: if t[i] != last: t[lasti] = last = t[i] lasti += 1 i += 1 return t[:lasti] # Brute force is all that's left. u = [] for x in s: if x not in u: u.append(x) return u def CoeffDeter(obs, model): """ Coefficient of determination ============================ https://en.wikipedia.org/wiki/Coefficient_of_determination Parameters ---------- obs : ndarray(n) or list The observed dataset model : ndarray(n), list or scalar The fitted dataset Returns ------- R2 : float The coefficient of determination, varies between 1 for a perfect fit, and 0 for the worst possible fit ever """ if type(obs).__name__ == 'list': obs = np.array(obs) SS_tot = np.sum(np.power( (obs - obs.mean()), 2 )) SS_err = np.sum(np.power( (obs - model), 2 )) R2 = 1 - (SS_err/SS_tot) return R2 def calc_sample_rate(time, rel_error=1e-4): """ the sample rate should be constant throughout the measurement serie define the maximum allowable relative error on the local sample rate rel_error = 1e-4 # 0.0001 = 0.01% """ deltas = np.diff(time) # the sample rate should be constant throughout the measurement serie # define the maximum allowable relative error on the local sample rate if not (deltas.max() - deltas.min())/deltas.max() < rel_error: print('Sample rate not constant, max, min values:', end='') print('%1.6f, %1.6f' % (1/deltas.max(), 1/deltas.min())) # raise AssertionError return 1/deltas.mean() def findIntersection(fun1, fun2, x0): """ Find Intersection points of two functions ========================================= Find the intersection between two random callable functions. The other alternative is that they are not callable, but are just numpy arrays describing the functions. Parameters ---------- fun1 : calable Function 1, should return a scalar and have one argument fun2 : calable Function 2, should return a scalar and have one argument x0 : float Initial guess for sp.optimize.fsolve Returns ------- """ return sp.optimize.fsolve(lambda x : fun1(x) - fun2(x), x0) # TODO: replace this with some of the pyrain functions def find0(array, xi=0, yi=1, verbose=False, zerovalue=0.0): """ Find single zero crossing ========================= Find the point where a x-y dataset crosses zero. This method can only handle one zero crossing point. Parameters ---------- array : ndarray should be 2D, with a least 2 columns and 2 rows xi : int, default=0 index of the x values on array[:,xi] yi : int, default=1 index of the y values on array[:,yi] zerovalue : float, default=0 Set tot non zero to find the corresponding crossing. verbose : boolean, default=False if True intermediate results are printed. Usefull for debugging Returns ------- y0 : float if no x0=0 exists, the result will be an interpolation between the two points around 0. y0i : int index leading to y0 in the input array. In case y0 was the result of an interpolation, the result is the one closest to x0=0 """ # Determine the two points where aoa=0 lies in between # take all the negative values, the maximum is the one closest to 0 try: neg0i = np.abs(array[array[:,xi].__le__(zerovalue),xi]).argmax() # This method will fail if there is no zero crossing (not enough data) # in other words: does the given data range span from negative, to zero to # positive? except ValueError: print('Given data range does not include zero crossing.') return 0,0 # find the points closest to zero, sort on absolute values isort = np.argsort(np.abs(array[:,xi]-zerovalue)) if verbose: print(array[isort,:]) # find the points closest to zero on both ends of the axis neg0i = isort[0] sign = int(np.sign(array[neg0i,xi])) # only search for ten points for i in range(1,20): # first time we switch sign, we have it if int(np.sign(array[isort[i],xi])) is not sign: pos0i = isort[i] break try: pos0i except NameError: print('Given data range does not include zero crossing.') return 0,0 # find the value closest to zero on the positive side # pos0i = neg0i +1 if verbose: print('0_negi, 0_posi', neg0i, pos0i) print('x[neg0i], x[pos0i]', array[neg0i,xi], array[pos0i,xi]) # check if x=0 is an actual point of the series if np.allclose(array[neg0i,xi], 0): y0 = array[neg0i,yi] if verbose: prec = ' 01.08f' print('y0:', format(y0, prec)) print('x0:', format(array[neg0i,xi], prec)) # check if x=0 is an actual point of the series elif np.allclose(array[pos0i,xi], 0): y0 = array[pos0i,yi] if verbose: prec = ' 01.08f' print('y0:', format(y0, prec)) print('x0:', format(array[pos0i,xi], prec)) # if not very close to zero, interpollate to find the zero point else: y1 = array[neg0i,yi] y2 = array[pos0i,yi] x1 = array[neg0i,xi] x2 = array[pos0i,xi] y0 = (-x1*(y2-y1)/(x2-x1)) + y1 if verbose: prec = ' 01.08f' print('y0:', format(y0, prec)) print('y1, y2', format(y1, prec), format(y2, prec)) print('x1, x2', format(x1, prec), format(x2, prec)) # return the index closest to the value of AoA zero if abs(array[neg0i,0]) > abs(array[pos0i,0]): y0i = pos0i else: y0i = neg0i return y0, y0i def remove_items(list, value): """Remove items from list The given list wil be returned withouth the items equal to value. Empty ('') is allowed. So this is een extension on list.remove() """ # remove list entries who are equal to value ind_del = [] for i in range(len(list)): if list[i] == value: # add item at the beginning of the list ind_del.insert(0, i) # remove only when there is something to remove if len(ind_del) > 0: for k in ind_del: del list[k] return list class DictDB(object): """ A dictionary based database class ================================= Each tag corresponds to a row and each value holds another tag holding the tables values, or for the current row the column values. Each tag should hold a dictionary for which the subtags are the same for each row entry. Otherwise you have columns appearing and dissapearing. That is not how a database is expected to behave. """ def __init__(self, dict_db): """ """ # TODO: data checks to see if the dict can qualify as a database # in this context self.dict_db = dict_db def search(self, dict_search): """ Search a dictionary based database ================================== Searching on based keys having a certain value. Parameters ---------- search_dict : dictionary Keys are the column names. If the values match the ones in the database, the respective row gets selected. Each tag is hence a unique row identifier. In case the value is a list (or it will be faster if it is a set), all the list entries are considered as a go. """ self.dict_sel = dict() # browse through all the rows for row in self.dict_db: # and for each search value, check if the row holds the requested # column value init = True alltrue = True for col_search, val_search in list(dict_search.items()): # for backwards compatibility, convert val_search to list if not type(val_search).__name__ in ['set', 'list']: # conversion to set is more costly than what you gain # by target in set([]) compared to target in [] # conclusion: keep it as a list val_search = [val_search] # all items should be true # if the key doesn't exists, it is not to be considered try: if self.dict_db[row][col_search] in val_search: if init or alltrue: alltrue = True else: alltrue = False except KeyError: alltrue = False init = False # all search criteria match, save the row if alltrue: self.dict_sel[row] = self.dict_db[row] # TODO: merge with search into a more general search/select method? # shouldn't I be moving to a proper database with queries? def search_key(self, dict_search): """ Search for a string in dictionary keys ====================================== Searching based on the key of the dictionaries, not the values Parameters ---------- searchdict : dict As key the search string, as value the operator: True for inclusive and False for exclusive. Operator is AND. """ self.dict_sel = dict() # browse through all the rows for row in self.dict_db: # and see for each row if its name contains the search strings init = True alltrue = True for col_search, inc_exc in dict_search.items(): # is it inclusive the search string or exclusive? if (row.find(col_search) > -1) == inc_exc: if init: alltrue = True else: alltrue = False break init = False # all search criteria matched, save the row if alltrue: self.dict_sel[row] = self.dict_db[row] class DictDiff(object): """ Calculate the difference between two dictionaries as: (1) items added (2) items removed (3) keys same in both but changed values (4) keys same in both and unchanged values Source ------ Basic idea of the magic is based on following stackoverflow question http://stackoverflow.com/questions/1165352/ fast-comparison-between-two-python-dictionary """ def __init__(self, current_dict, past_dict): self.current_d = current_dict self.past_d = past_dict self.set_current = set(current_dict.keys()) self.set_past = set(past_dict.keys()) self.intersect = self.set_current.intersection(self.set_past) def added(self): return self.set_current - self.intersect def removed(self): return self.set_past - self.intersect def changed(self): #set(o for o in self.intersect if self.past_d[o] != self.current_d[o]) # which is the similar (exept for the extension) as below olist = [] for o in self.intersect: # if we have a numpy array if type(self.past_d[o]).__name__ == 'ndarray': if not np.allclose(self.past_d[o], self.current_d[o]): olist.append(o) elif self.past_d[o] != self.current_d[o]: olist.append(o) return set(olist) def unchanged(self): t=set(o for o in self.intersect if self.past_d[o] == self.current_d[o]) return t def fit_exp(time, data, checkplot=True, method='linear', func=None, C0=0.0): """ Note that all values in data have to be possitive for this method to work! """ def fit_exp_linear(t, y, C=0): y = y - C y = np.log(y) K, A_log = np.polyfit(t, y, 1) A = np.exp(A_log) return A, K def fit_exp_nonlinear(t, y): # The model function, f(x, ...). It must take the independent variable # as the first argument and the parameters to fit as separate remaining # arguments. opt_parms, parm_cov = sp.optimize.curve_fit(model_func,t,y) A, K, C = opt_parms return A, K, C def model_func(t, A, K, C): return A * np.exp(K * t) + C # Linear fit if method == 'linear': # if data.min() < 0.0: # msg = 'Linear exponential fitting only works for positive values' # raise ValueError, msg A, K = fit_exp_linear(time, data, C=C0) fit = model_func(time, A, K, C0) C = C0 # Non-linear Fit elif method == 'nonlinear': A, K, C = fit_exp_nonlinear(time, data) fit = model_func(time, A, K, C) if checkplot: plt.figure() plt.plot(time, data, 'ro', label='data') plt.plot(time, fit, 'b', label=method) plt.legend(bbox_to_anchor=(0.9, 1.1), ncol=2) plt.grid() return fit, A, K, C def curve_fit_exp(time, data, checkplot=True, weights=None): """ This code is based on a StackOverflow question/answer: http://stackoverflow.com/questions/3938042/ fitting-exponential-decay-with-no-initial-guessing A*e**(K*t) + C """ def fit_exp_linear(t, y, C=0): y = y - C y = np.log(y) K, A_log = np.polyfit(t, y, 1) A = np.exp(A_log) return A, K def fit_exp_nonlinear(t, y): # The model function, f(x, ...). It must take the independent variable # as the first argument and the parameters to fit as separate remaining # arguments. opt_parms, parm_cov = sp.optimize.curve_fit(model_func,t,y) A, K, C = opt_parms return A, K, C def model_func(t, A, K, C): return A * np.exp(K * t) + C C0 = 0 ## Actual parameters #A0, K0, C0 = 2.5, -4.0, 0.0 ## Generate some data based on these #tmin, tmax = 0, 0.5 #num = 20 #t = np.linspace(tmin, tmax, num) #y = model_func(t, A0, K0, C0) ## Add noise #noisy_y = y + 0.5 * (np.random.random(num) - 0.5) # Linear fit A_lin, K_lin = fit_exp_linear(time, data, C=C0) fit_lin = model_func(time, A_lin, K_lin, C0) # Non-linear Fit A_nonlin, K_nonlin, C = fit_exp_nonlinear(time, data) fit_nonlin = model_func(time, A_nonlin, K_nonlin, C) # and plot if checkplot: plt.figure() plt.plot(time, data, 'ro', label='data') plt.plot(time, fit_lin, 'b', label='linear') plt.plot(time[::-1], fit_nonlin, 'g', label='nonlinear') plt.legend(bbox_to_anchor=(0.9, 1.0), ncol=3) plt.grid() return def convert_to_utf8(filename): # gather the encodings you think that the file may be # encoded inside a tuple encodings = ('windows-1253', 'iso-8859-7', 'macgreek') # try to open the file and exit if some IOError occurs try: f = open(filename, 'r').read() except Exception: sys.exit(1) # now start iterating in our encodings tuple and try to # decode the file for enc in encodings: try: # try to decode the file with the first encoding # from the tuple. # if it succeeds then it will reach break, so we # will be out of the loop (something we want on # success). # the data variable will hold our decoded text data = f.decode(enc) break except Exception: # if the first encoding fail, then with the continue # keyword will start again with the second encoding # from the tuple an so on.... until it succeeds. # if for some reason it reaches the last encoding of # our tuple without success, then exit the program. if enc == encodings[-1]: sys.exit(1) continue # now get the absolute path of our filename and append .bak # to the end of it (for our backup file) fpath = os.path.abspath(filename) newfilename = fpath + '.bak' # and make our backup file with shutil shutil.copy(filename, newfilename) # and at last convert it to utf-8 f = open(filename, 'w') try: f.write(data.encode('utf-8')) except Exception(e): print(e) finally: f.close() def to_lower_case(proot): """ Rename all the files in the subfolders of proot to lower case, and also the subfolder name when it the folder name starts with DLC """ # find all dlc defintions in the subfolders for root, dirs, files in os.walk(proot): for fname in files: orig = os.path.join(root, fname) rename = os.path.join(root, fname.lower()) os.rename(orig, rename) base = root.split(os.path.sep)[-1] if base[:3] == 'DLC': new = root.replace(base, base.lower()) os.rename(root, new) def read_excel_files(proot, fext='xlsx', pignore=None, sheet=0, pinclude=None, silent=False): """ Read recursively all MS Excel files with extension "fext". Only the default name for the first sheet (Sheet1) of the Excel file is considered. Parameters ---------- proot : string Path that will be recursively explored for the presence of files that have file extension "fext" fext : string, default='xlsx' File extension of the Excel files that should be loaded. Other valid extensions are csv, xls, and xlsm. pignore : string, default=None Specify which string can not occur in the full path of the DLC target. pinclude : string, default=None Specify which string has to occur in the full path of the DLC target. sheet : string or int, default=0 Name or index of the Excel sheet to be considered. By default, the first sheet (index=0) is taken. Ignored when fext is csv. Returns ------- df_list : dictionary A dictionary with the Excel file name (excluding 'fext') as key, and the corresponding pandas DataFrame as value. """ df_list = {} # find all dlc defintions in the subfolders for root, dirs, files in os.walk(proot): for file_name in files: if not file_name.split('.')[-1] == fext: continue f_target = os.path.join(root, file_name) # if it does not contain pinclude, ignore the dlc if pinclude is not None and f_target.find(pinclude) < 0: continue # if it does contain pignore, ingore the dlc if pignore is not None and f_target.find(pignore) > -1: continue if not silent: print(f_target, end='') try: if fext == 'csv': df = pd.read_csv(f_target) else: df = pd.read_excel(f_target, sheetname=sheet) df_list[f_target.replace('.'+fext, '')] = df if not silent: print(': sucesfully included %i case(s)' % len(df)) except: if not silent: print(' XXXXX ERROR COULD NOT READ') return df_list def convert_xlsx2csv(fpath, sheet='Sheet1', fext='xlsx'): """ Convert xlsx load case definitions to csv so we can track them with git """ for root, dirs, files in os.walk(fpath): for file_name in files: if not file_name.split('.')[-1] == fext: continue fxlsx = os.path.join(root, file_name) print(fxlsx) xl = pd.ExcelFile(fxlsx) df = xl.parse(sheet) fcsv = fxlsx.replace(fext, 'csv') df.to_csv(fcsv, sep=';') def check_df_dict(df_dict): """ Verify if the dictionary that needs to be transferred to a Pandas DataFrame makes sense Returns ------- collens : dict Dictionary with df_dict keys as keys, len(df_dict[key]) as column. In other words: the length of each column (=rows) of the soon to be df. """ collens = {} for col, values in df_dict.items(): print('%6i : %s' % (len(values), col)) collens[col] = len(values) return collens def find_tags(fname): """ Find all unqiue tags in a text file. """ with open(fname, 'r') as f: lines = f.readlines() # regex for finding all tags in a line regex = re.compile('(\\[.*?\\])') tags_in_master = {} for i, line in enumerate(lines): # are there any tags on this line? Ignore comment AND label section tags = regex.findall(line.split(';')[0].split('#')[0]) for tag in tags: try: tags_in_master[tag].append(i) except KeyError: tags_in_master[tag] = [i] return tags_in_master def read_mathematica_3darray(fname, shape=None, data=None, dtype=None): """ I am not sure with which Mathematica command you generate this data, but this is the format in which I got it. Parameters ---------- fname : str shape : tuple, default=None Tuple with 3 elements, defining the ndarray elements for each of the axes. Only used when data is set to None. dtype : dtype, default=None Is used to set the data dtype when data=None. data : ndarray, default=None When None, the data array is created according to shape and dtype. Returns ------- data : ndarray """ if data is None: data = np.ndarray(shape, dtype=dtype) else: dtype = data.dtype with open(fname, 'r') as f: for i, line in enumerate(f.readlines()): els = line.split('}","{') for j, row in enumerate(els): row_ = row.replace('{', '').replace('}', '').replace('"', '') data[i,j,:] = np.genfromtxt(row_.split(', '), dtype=dtype) return data def CDF(series, sort=True): """ Cumulative distribution function ================================ Cumulative distribution function of the form: .. math:: CDF(i) = \\frac{i-0.3}{N - 0.9} where i : the index of the sorted item in the series N : total number of elements in the serie Series will be sorted first. Parameters ---------- series : ndarra(N) sort : bool, default=True to sort or not to sort Returns ------- cdf : ndarray (N,2) Array with the sorted input series on the first column and the cumulative distribution function on the second. """ N = len(series) # column array i_range = np.arange(N) # convert to row array x, i_range = np.meshgrid([1], i_range) # to sort or not to sort the input series if sort: series.sort(axis=0) # convert to row array. Do after sort, otherwise again 1D column array x, series = np.meshgrid([1], series) # cdf array cdf = sp.zeros((N,2)) # calculate the actual cdf values cdf[:,1] = (i_range[:,0]-0.3)/(float(N)-0.9) # make sure it is sorted from small to large if abs(series[0,0]) > abs(series[series.shape[0]-1,0]) and series[0,0] < 0: # save in new variable, otherwise things go wrong!! # if we do series[:,0] = series[::-1,0], we get somekind of mirrord # array series2 = series[::-1,0] # x-channel should be on zero for plotting cdf[:,0] = series2[:] return cdf def rebin(hist, bins, nrbins): """ Assume within a bin, the values are equally distributed. Only works for equally spaced bins. """ binrange = float(bins[-1] - bins[0]) width = np.diff(bins).mean() width_ = binrange / float(nrbins) hist_ = sp.zeros((nrbins)) bins_ = np.linspace(bins[0], bins[-1], num=nrbins+1) if width_ < width: raise ValueError('you can only rebin to larger bins') if not len(hist)+1 == len(bins): raise ValueError('bins should contain the bin edges') window, j = width, 0 # print('width:', width) # print('j=0') for i, k in enumerate(hist): if window < width_: hist_[j] += hist[i]#*width # print('window=%1.04f' % window, end=' ') # print('(%02i):%1.04f' % (i, hist[i])) window += width if i+1 == len(hist): print() else: w_right = (window - width_) / width w_left = (width - (window - width_)) / width hist_[j] += hist[i]*w_left # print('window=%1.04f' % window, end=' ') # print('(%02i):%1.04f*(%1.02f)' % (i, hist[i], w_left), end=' ') # print('T: %1.04f' % hist_[j]) if j+1 >= nrbins: hist_[j] += hist[i]*w_right print('') return hist_, bins_ j += 1 # print('j=%i' % j) # print('window=%1.04f' % window, end=' ') hist_[j] += hist[i]*w_right window = w_right*width + width # print('(%02i):%1.04f*(%1.02f)' % (i, hist[i], w_right)) # print('') return hist_, bins_ def histfit(hist, bin_edges, xnew): """ This should be similar to the Matlab function histfit: http://se.mathworks.com/help/stats/histfit.html Based on: http://nbviewer.ipython.org/url/xweb.geos.ed.ac.uk/~jsteven5/blog/ fitting_distributions_from_percentiles.ipynb Calculate the CDF of given PDF, and fit a lognorm distribution onto the CDF. This obviously only works if your PDF is lognorm. Parameters ---------- hist : ndarray(n) bin_edges : ndarray(n+1) xnew : ndarray(k) Returns ------- shape_out scale_out pdf_fit : ndarray(k) """ # Take the upper edges of the bins. I tried to use the center of the bin # and the left bin edges, but it works best with the right edges # It only works ok with x data is positive, force only positive x-data x_hist = (bin_edges - bin_edges[0])[1:] y_hist = hist.cumsum()/hist.cumsum().max() # Normalise the cumulative sum # FIT THE DISTRIBUTION (shape_out, scale_out), pcov = opt.curve_fit( lambda xdata, shape, scale: stats.lognorm.cdf(xdata, shape, loc=0, scale=scale), x_hist, y_hist) pdf_fit = stats.lognorm.pdf(xnew, shape_out, loc=0, scale=scale_out) # normalize width = np.diff(x_hist).mean() pdf_fit = pdf_fit / (pdf_fit * width).sum() return shape_out, scale_out, pdf_fit def histfit_arbritrary(edges, pdf, edges_new, resolution=100): """Re-bin based on the CDF of a PDF. Assume normal distribution within a bin to transform the CDF to higher resolution. Parameters ---------- edges : ndarray(n+1) edges of the bins, inlcuding most left and right edges. pdf : ndarray(n) probability of the bins edges_new : ndarray(m+1) edges of the new bins resolution : int resolution of the intermediate CDF used for re-fitting. Returns ------- centers_new : ndarray(m) widths_new : ndarray(m) pdf_new : ndarray(m) """ x_hd = np.ndarray((0,)) cdf_hd = np.ndarray((0,)) binw = np.ndarray((0,)) for i in range(len(pdf)): # HD grid for x x_inc = np.linspace(edges[i], edges[i+1], num=resolution) # FIXME: let the distribution in a bin be a user configurable input # define a distribution within the bin: norm shape = 2.5 scale = shape*2/10 x_inc = np.linspace(0, scale*10, num=resolution) cdf_inc = stats.norm.cdf(x_inc, shape, scale=scale) # scale cdf_inc and x-coordinates cdf_inc_scale = pdf[i] * cdf_inc / cdf_inc[-1] binw = edges[i+1] - edges[i] x_inc_scale = edges[i] + (binw * x_inc / x_inc[-1]) # add to the new hd corodinates and cdf x_hd = np.append(x_hd, x_inc_scale) if i == 0: cdf_i = 0 else: cdf_i = cdf_hd[-1] cdf_hd = np.append(cdf_hd, cdf_inc_scale + cdf_i) # plt.plot(x_inc, cdf_inc) # plt.plot(x_inc_scale, cdf_inc_scale) cdf_new = interp(x_hd, cdf_hd, edges_new) # last point includes everything that comes after cdf_new[-1] = 1 pdf_new = np.diff(cdf_new) widths_new = np.diff(edges_new) centers_new = widths_new + edges[0] # the first bin also includes everything that came before pdf_new[0] += cdf_new[0] pdf_new /= pdf_new.sum() # plt.plot(x_hd, cdf_hd) # plt.plot(edges_new, cdf_new, 'rs') # # plt.bar(edges_new[:-1], pdf_new, width=widths_new, color='b') # plt.bar(edges[:-1], pdf, width=np.diff(edges), color='r', alpha=0.7) return centers_new, widths_new, pdf_new def hist_centers2edges(centers): """Given the centers of bins, return its edges and bin widths. """ binw_c = centers[1:] - centers[:-1] edges = np.ndarray((len(centers)+1,)) edges[0] = centers[0] - binw_c[0]/2.0 edges[-1] = centers[-1] + binw_c[-1]/2.0 edges[1:-1] = centers[1:] - binw_c/2.0 binw_e = edges[1:] - edges[:-1] return edges, binw_e def df_dict_check_datatypes(df_dict): """ there might be a mix of strings and numbers now, see if we can have the same data type throughout a column nasty hack: because of the unicode -> string conversion we might not overwrite the same key in the dict. """ # FIXME: this approach will result in twice the memory useage though... # we can not pop/delete items from a dict while iterating over it df_dict2 = {} for colkey, col in df_dict.items(): # if we have a list, convert to string if type(col[0]).__name__ == 'list': for ii, item in enumerate(col): col[ii] = '**'.join(item) # if we already have an array (statistics) or a list of numbers # do not try to cast into another data type, because downcasting # in that case will not raise any exception elif type(col[0]).__name__[:3] in ['flo', 'int', 'nda']: df_dict2[str(colkey)] = np.array(col) continue # in case we have unicodes instead of strings, we need to convert # to strings otherwise the saved .h5 file will have pickled elements try: df_dict2[str(colkey)] = np.array(col, dtype=np.int32) except OverflowError: try: df_dict2[str(colkey)] = np.array(col, dtype=np.int64) except OverflowError: df_dict2[str(colkey)] = np.array(col, dtype=np.float64) except ValueError: try: df_dict2[str(colkey)] = np.array(col, dtype=np.float64) except ValueError: df_dict2[str(colkey)] = np.array(col, dtype=np.str) except TypeError: # in all other cases, make sure we have converted them to # strings and NOT unicode df_dict2[str(colkey)] = np.array(col, dtype=np.str) except Exception as e: print('failed to convert column %s to single data type' % colkey) raise(e) return df_dict2 def dict2df(df_dict, fname, save=True, update=False, csv=False, colsort=None, check_datatypes=False, rowsort=None, csv_index=False, xlsx=False, complib='blosc'): """ Convert the df_dict to df and save/update if required. If converting to df fails, pickle the object. Optionally save as csv too. Parameters ---------- df_dict : dict Dictionary that will be converted to a DataFrame fname : str File name excluding the extension. .pkl, .h5 and/or .csv will be added. """ if check_datatypes: df_dict = df_dict_check_datatypes(df_dict) # in case converting to dataframe fails, fall back try: if colsort is not None: dfs = pd.DataFrame(df_dict)[colsort] # try: # dfs = dfs[colsort] # except KeyError as e: # print('Re-ordering the columns failed. colsort cols are:') # print(sorted(colsort)) # print('Actual columns:') # print(sorted(dfs.keys())) # print('&', set(colsort) & set(dfs.keys())) # print('-', set(colsort) - set(dfs.keys())) # raise e else: dfs = pd.DataFrame(df_dict) except Exception as e: print('failed to convert to data frame', end='') if fname is not None: with open(fname + '.pkl', 'wb') as f: pickle.dump(df_dict, f, protocol=2) print(', saved as dict') else: print('') print('df_dict has following columns and corresponding nr of rows') check_df_dict(df_dict) raise(e) if rowsort is not None: dfs.sort(columns=rowsort, inplace=True) # # apply categoricals to objects: reduce in memory footprint. In theory # # when using compression on a saved hdf5 object, this shouldn't make # # any difference. # for column_name, column_dtype in dfs.dtypes.iteritems(): # # applying categoricals mostly makes sense for objects # # we ignore all others # if column_dtype.name == 'object': # dfs[column_name] = dfs[column_name].astype('category') # and save/update the statistics database if save and fname is not None: if update: print('updating: %s ...' % (fname), end='') try: dfs.to_hdf('%s.h5' % fname, 'table', mode='r+', append=True, format='table', complevel=9, complib=complib) except IOError: print('Can not update, file does not exist. Saving instead' '...', end='') dfs.to_hdf('%s.h5' % fname, 'table', mode='w', format='table', complevel=9, complib=complib) else: print('saving: %s ...' % (fname), end='') if csv: dfs.to_csv('%s.csv' % fname, index=csv_index) if xlsx: dfs.to_excel('%s.xlsx' % fname, index=csv_index) dfs.to_hdf('%s.h5' % fname, 'table', mode='w', format='table', complevel=9, complib=complib) print('DONE!!\n') return dfs class Tests(unittest.TestCase): def setUp(self): pass def test_rebin1(self): hist = np.array([2,5,5,9,2,6]) bins = np.arange(7) nrbins = 3 hist_, bins_ = rebin(hist, bins, nrbins) answer = np.array([7, 14, 8]) self.assertTrue(np.allclose(answer, hist_)) binanswer = np.array([0.0, 2.0, 4.0, 6.0]) self.assertTrue(np.allclose(binanswer, bins_)) def test_rebin2(self): hist = np.array([2,5,5,9,2,6]) bins = np.arange(7) nrbins = 1 hist_, bins_ = rebin(hist, bins, nrbins) answer = np.array([hist.sum()]) self.assertTrue(np.allclose(answer, hist_)) binanswer = np.array([bins[0],bins[-1]]) self.assertTrue(np.allclose(binanswer, bins_)) def test_rebin3(self): hist = np.array([1,1,1]) bins = np.arange(4) nrbins = 2 hist_, bins_ = rebin(hist, bins, nrbins) answer = np.array([1.5, 1.5]) self.assertTrue(np.allclose(answer, hist_)) binanswer = np.array([0, 1.5, 3.0]) self.assertTrue(np.allclose(binanswer, bins_)) def test_rebin4(self): hist = np.array([1,1,1]) bins = np.arange(2, 14, 3) nrbins = 2 hist_, bins_ = rebin(hist, bins, nrbins) answer = np.array([1.5, 1.5]) self.assertTrue(np.allclose(answer, hist_)) binanswer = np.array([2, 6.5, 11.0]) self.assertTrue(np.allclose(binanswer, bins_)) def test_rebin5(self): hist = np.array([1,4,2,5,6,11,9,10,8,0.5]) bins = np.linspace(-2, 10, 11) nrbins = 8 hist_, bins_ = rebin(hist, bins, nrbins) answer = np.array([2, 4, 4.75, 7.25, 13.25, 11.75, 11, 2.5]) self.assertTrue(np.allclose(answer, hist_)) binanswer = np.array([-2., -0.5, 1., 2.5, 4., 5.5, 7., 8.5, 10.0]) self.assertTrue(np.allclose(binanswer, bins_)) if __name__ == '__main__': unittest.main()