diff --git a/wetb/utils/subset_mean.py b/wetb/utils/subset_mean.py new file mode 100644 index 0000000000000000000000000000000000000000..3cf59ae92457ee2bad384fe3aa87a28e856deae2 --- /dev/null +++ b/wetb/utils/subset_mean.py @@ -0,0 +1,208 @@ +''' +Created on 24/06/2016 + +@author: MMPE +''' + +import numpy as np +import unittest +from wetb.utils.geometry import rpm2rads +from _collections import deque +from tables.tests.test_index_backcompat import Indexes2_0TestCase + + +def power_mean(power, trigger_indexes, I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) : + """Calculate the density normalized mean power, taking acceleration of the rotor into account + + Parameters + --------- + Power : array_like + Power [W] + trigger_indexes : array_like + Trigger indexes + I : float + Rotor inerti [kg m^2] + rotor_speed : array_like + Rotor speed [rad/s] + time : array_like + time [s] + air_density : int, float or array_like, optional + Air density. + rotor_speed_mean_samples : int + To reduce the effect of noise, the mean of a number of rotor speed samples can be used + + Returns + ------- + mean power including power used to (de)accelerate rotor + + Examples: + --------- + turbine_power_mean = lambda power, triggers : power_mean(power, triggers, I=2.5E7, rot_speed, time, rho) + trigger_indexes = time_trigger(time,30) + wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean}) + """ + if rotor_speed_mean_samples == 1: + rs1 = rotor_speed[trigger_indexes[:-1]] + rs2 = rotor_speed[trigger_indexes[1:] - 1] + else: + rs = np.array([rotor_speed[max(i - rotor_speed_mean_samples, 0):i - 1 + rotor_speed_mean_samples].mean() for i in trigger_indexes]) + rs1 = rs[:-1] + rs2 = rs[1:] + + + power = np.array([np.nanmean(power[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) + if isinstance(air_density, (int, float)): + if air_density != 1.225: + power = power / air_density * 1.225 + else: + air_density = np.array([np.nanmean(air_density[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) + power = power / air_density * 1.225 + return power + 1 / 2 * I * (rs2 ** 2 - rs1 ** 2) / (time[trigger_indexes[1:] - 1] - time[trigger_indexes[:-1]]) + +def power_mean_func_kW(I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) : + """Return a power mean function [kW] used to Calculate the density normalized mean power, taking acceleration of the rotor into account + + Parameters + --------- + I : float + Rotor inerti [kg m^2] + rotor_speed : array_like + Rotor speed [rad/s] + time : array_like + time [s] + air_density : int, float or array_like, optional + Air density. + rotor_speed_mean_samples : int + To reduce the effect of noise, the mean of a number of rotor speed samples can be used + + Returns + ------- + mean power function + + Examples: + --------- + turbine_power_mean = power_mean_func_kW(power, triggers, I=2.5E7, rot_speed, time, rho) + trigger_indexes = time_trigger(time,30) + wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean}) + """ + def mean_power(power, trigger_indexes): + return power_mean(power * 1000, trigger_indexes, I, rotor_speed, time , air_density, rotor_speed_mean_samples) / 1000 + return mean_power + + +def subset_mean(data, trigger_indexes, mean_func={}): + if isinstance(data, list): + data = np.array(data).T + if len(data.shape)==1: + no_sensors = 1 + else: + no_sensors = data.shape[1] + if isinstance(trigger_indexes[0], tuple): + triggers = np.array(trigger_indexes) + steps = np.diff(triggers[:, 0]) + lengths = np.diff(triggers)[:, 0] + if np.all(steps == steps[0]) and np.all(lengths == lengths[0]): + subset_mean = np.mean(np.r_[data.reshape(data.shape[0],no_sensors),np.empty((steps[0],no_sensors))+np.nan][triggers[0][0]:triggers.shape[0] * steps[0] + triggers[0][0]].reshape(triggers.shape[0], steps[0], no_sensors)[:, :lengths[0]], 1) + else: + subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in trigger_indexes]) + for index, func in mean_func.items(): + att = data[:, index] + subset_mean[:, index] = func(att, trigger_indexes) + else: + steps = np.diff(trigger_indexes) + + if np.all(steps == steps[0]): + #equal distance + subset_mean = np.mean(data[trigger_indexes[0]:trigger_indexes[-1]].reshape([ len(trigger_indexes) - 1, steps[0], data.shape[1]]), 1) + else: + subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())]) + for index, func in mean_func.items(): + att = data[:, index] + subset_mean[:, index] = func(att, trigger_indexes) + if len(data.shape)==1 and len(subset_mean.shape)==2: + return subset_mean[:,0] + else: + return subset_mean + + +def cycle_trigger(values, trigger_value=None, step=1, ascending=True, tolerance=0): + values = np.array(values) + if trigger_value is None: + r = values.max() - values.min() + values = (values[:] - r / 2) % r + trigger_value = r / 2 + if ascending: + return np.where((values[1:] > trigger_value + tolerance) & (values[:-1] <= trigger_value - tolerance))[0][::step] + else: + return np.where((values[1:] < trigger_value - tolerance) & (values[:-1] >= trigger_value + tolerance))[0][::step] + +def revolution_trigger(values, rpm_dt=None, dmin=5, dmax=10, ): + """Return indexes where values are > max(values)-dmin and decreases more than dmax + If RPM and time step is provided, triggers steps < time of 1rpm is removed + + Parameters + --------- + values : array_like + Position signal (e.g. rotor position) + rpm_dt : tuple(array_like, float), optional + - rpm : RPM signal + - dt : time step between samples + dmin : int or float, optional + Minimum normal position increase between samples + dmax : float or int, optional + Maximum normal position increase between samples + + + Returns + ------- + trigger indexes + + """ + + values = np.array(values) + indexes = np.where((np.diff(values)<-dmax)&(values[:-1]>values.max()-dmax))[0] + + if rpm_dt is None: + return indexes + else: + index_pairs = [] + rpm, dt = rpm_dt + d_deg = rpm *360/60*dt + cum_d_deg = np.cumsum(d_deg) + lbound, ubound = values.max()-dmax, values.max()+dmax + index_pairs = [(i1,i2) for i1,i2, deg in zip(indexes[:-1], indexes[1:], cum_d_deg[indexes[1:]-1]-cum_d_deg[indexes[:-1]]) + if deg > lbound and deg<ubound] + return index_pairs + + +def time_trigger(time, step, start=None, stop=None): + if start is None: + start = time[0] + decimals = int(np.ceil(np.log10(1 / np.nanmin(np.diff(time))))) + time = np.round(time - start, decimals) + + + steps = np.round(np.diff(time), decimals) + if np.sum(steps == steps[0])/len(time)>.99: #np.all(steps == steps[0]): + # equal time step + time = np.r_[time, time[-1] + max(set(steps), key=list(steps).count)] + if stop is None: + stop = time[~np.isnan(time)][-1] + else: + stop -= start + epsilon = 10 ** -(decimals + 2) + return np.where(((time % step < epsilon) | (time % step > step - epsilon)) & (time >= 0) & (time <= stop))[0] + + +def non_nan_index_trigger(sensor, step): + trigger = [] + i = 0 + nan_indexes = deque(np.where(np.isnan(sensor))[0].tolist() + [len(sensor)]) + while i + step <= sensor.shape[0]: + if i+step<=nan_indexes[0]: + trigger.append((i,i+step)) + i+=step + else: + i = nan_indexes.popleft()+1 + return trigger +