Newer
Older
import numpy as np
from py_wake.site.shear import PowerShear
from py_wake.site.xrsite import XRSite
import xarray as xr
from py_wake.tests import npt
import pytest
import matplotlib.pyplot as plt
from numpy import newaxis as na
from py_wake.tests.test_files import tfp

Mads M. Pedersen
committed
from py_wake.examples.data.hornsrev1 import Hornsrev1Site, V80, wt9_x, wt9_y
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines, IEA37Site

Mads M. Pedersen
committed
from py_wake.wind_turbines import WindTurbines
from py_wake.deficit_models.gaussian import BastankhahGaussian, BastankhahGaussianDeficit
from py_wake.wind_farm_models.engineering_models import PropagateDownwind
from py_wake.superposition_models import LinearSum
from py_wake.tests.check_speed import timeit

Mads M. Pedersen
committed
from py_wake.site._site import LocalWind
from py_wake.utils import weibull
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
f = [0.035972, 0.039487, 0.051674, 0.070002, 0.083645, 0.064348,
0.086432, 0.117705, 0.151576, 0.147379, 0.10012, 0.05166]
A = [9.176929, 9.782334, 9.531809, 9.909545, 10.04269, 9.593921,
9.584007, 10.51499, 11.39895, 11.68746, 11.63732, 10.08803]
k = [2.392578, 2.447266, 2.412109, 2.591797, 2.755859, 2.595703,
2.583984, 2.548828, 2.470703, 2.607422, 2.626953, 2.326172]
ti = .1
@pytest.fixture
def uniform_site():
ti = 0.1
ds = xr.Dataset(
data_vars={'WS': 10, 'P': ('wd', f), 'TI': ti},
coords={'wd': np.linspace(0, 360, len(f), endpoint=False)})
return XRSite(ds, shear=PowerShear(h_ref=100, alpha=.2))
@pytest.fixture
def uniform_weibull_site():
ti = 0.1
ds = xr.Dataset(
data_vars={'Sector_frequency': ('wd', f), 'Weibull_A': ('wd', A), 'Weibull_k': ('wd', k), 'TI': ti},
coords={'wd': np.linspace(0, 360, len(f), endpoint=False)})
return XRSite(ds, shear=PowerShear(h_ref=100, alpha=.2))
@pytest.fixture
def complex_fixed_pos_site():
ti = 0.1
ds = xr.Dataset(
data_vars={'Speedup': ('i', np.arange(.8, 1.3, .1)),
'Turning': ('i', np.arange(-2, 3)),
'Sector_frequency': ('wd', f), 'Weibull_A': ('wd', A), 'Weibull_k': ('wd', k), 'TI': ti},
coords={'i': np.arange(5), 'wd': np.linspace(0, 360, len(f), endpoint=False)})
x_i = np.arange(5)
return XRSite(ds, initial_position=np.array([x_i, x_i + 1]).T, shear=PowerShear(h_ref=100, alpha=.2))
@pytest.fixture
def complex_grid_site():
ti = 0.1
ds = xr.Dataset(
data_vars={'Speedup': (['x', 'y'], np.arange(.8, 1.4, .1).reshape((3, 2))),
'Turning': (['x', 'y'], np.arange(-2, 4, 1).reshape((3, 2))),
'Sector_frequency': ('wd', f), 'Weibull_A': ('wd', A), 'Weibull_k': ('wd', k), 'TI': ti},
coords={'x': [0, 5, 10], 'y': [0, 5], 'wd': np.linspace(0, 360, len(f), endpoint=False)})
return XRSite(ds, shear=PowerShear(h_ref=100, alpha=.2), interp_method='linear')
@pytest.fixture
def complex_ws_site():
ti = 0.1
P = weibull.cdf(np.array([3, 5, 7, 9, 11, 13]), 10, 2) - weibull.cdf(np.array([0, 3, 5, 7, 9, 11]), 10, 2)
ds = xr.Dataset(
data_vars={'Speedup': (['ws'], np.arange(.8, 1.4, .1)),
'P': (('wd', 'ws'), P[na, :] * np.array(f)[:, na]), 'TI': ti},
coords={'ws': [1.5, 4, 6, 8, 10, 12], 'wd': np.linspace(0, 360, len(f), endpoint=False)})
return XRSite(ds, shear=PowerShear(h_ref=100, alpha=.2), interp_method='linear')
def test_uniform_local_wind(uniform_site):
site = uniform_site
x_i = y_i = np.arange(5)
wdir_lst = np.arange(0, 360, 90)
wsp_lst = np.arange(3, 6)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
npt.assert_array_equal(lw.WS, 10)
npt.assert_array_equal(lw.WD, wdir_lst)
npt.assert_array_equal(lw.TI, 0.1)
npt.assert_array_equal(lw.P, np.array([0.035972, 0.070002, 0.086432, 0.147379]) * 3)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
npt.assert_array_equal(site.elevation(x_i, y_i), 0)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100)
npt.assert_array_equal(lw.WD_ilk.shape, (1, 360, 1))
z = np.arange(1, 200)
zero = [0] * len(z)
ws100_2 = site.local_wind(x_i=zero, y_i=zero, h_i=z, wd=[0], ws=[10]).WS_ilk[:, 0, 0]
site.shear = PowerShear(70, alpha=.3)
ws70_3 = site.local_wind(x_i=zero, y_i=zero, h_i=z, wd=[0], ws=[10]).WS_ilk[:, 0, 0]
if 0:
plt.plot(ws100_2, z)
plt.plot(ws70_3, z)
plt.show()
npt.assert_array_equal(10 * (z / 100)**.2, ws100_2)
npt.assert_array_equal(10 * (z / 70)**.3, ws70_3)
def test_uniform_weibull_local_wind(uniform_weibull_site):
site = uniform_weibull_site
x_i = y_i = np.arange(5)
wdir_lst = np.arange(0, 360, 90)
wsp_lst = np.arange(3, 6)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
npt.assert_array_equal(lw.WS, [3, 4, 5])
npt.assert_array_equal(lw.WD, wdir_lst)
npt.assert_array_equal(lw.TI, 0.1)
# ref_site = UniformWeibullSite(p_wd=f, a=A, k=k, ti=0.1, shear=site.shear)
# lw_ref = ref_site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
# print(lw_ref.P)
npt.assert_array_almost_equal(lw.P, [[0.00553222, 0.00770323, 0.00953559],
[0.0078508, 0.01177761, 0.01557493],
[0.0105829, 0.01576518, 0.02066746],
[0.01079997, 0.01656828, 0.02257487]])
def test_complex_fixed_pos_local_wind(complex_fixed_pos_site):
site = complex_fixed_pos_site
x_i, y_i = site.initial_position.T
npt.assert_array_equal(x_i, np.arange(5))
npt.assert_array_equal(y_i, np.arange(5) + 1)
wdir_lst = np.arange(0, 360, 90)
wsp_lst = np.arange(3, 6)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
npt.assert_array_equal(lw.WS, [3, 4, 5] * np.arange(.8, 1.3, .1)[:, na])
npt.assert_array_equal(lw.WD, (wdir_lst + np.arange(-2, 3)[:, na]) % 360)
npt.assert_array_equal(lw.TI, 0.1)
npt.assert_array_almost_equal(lw.P, [[0.00553222, 0.00770323, 0.00953559],
[0.0078508, 0.01177761, 0.01557493],
[0.0105829, 0.01576518, 0.02066746],
[0.01079997, 0.01656828, 0.02257487]])
def test_complex_grid_local_wind(complex_grid_site):
site = complex_grid_site
y = np.arange(5)
x = y * 2
X, Y = np.meshgrid(x, y)
x_i, y_i = X.flatten(), Y.flatten()
wdir_lst = np.arange(0, 360, 90)
wsp_lst = np.arange(3, 6)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
if 0:
c = plt.contourf(X, Y, lw.WS.sel(ws=5).data.reshape(X.shape))
plt.colorbar(c)
plt.figure()
c = plt.contourf(X, Y, lw.WD.sel(wd=90).data.reshape(X.shape))
plt.colorbar(c)
plt.show()
lw = site.local_wind(x_i=[2.5, 7.5], y_i=[2.5, 2.5], h_i=100, wd=wdir_lst, ws=wsp_lst)
npt.assert_array_almost_equal(lw.WS, [3, 4, 5] * np.array([0.95, 1.15])[:, na])
npt.assert_array_equal(lw.WD, (wdir_lst + np.array([-.5, 1.5])[:, na]) % 360)
npt.assert_array_equal(lw.TI, 0.1)
npt.assert_array_almost_equal(lw.P, [[0.00553222, 0.00770323, 0.00953559],
[0.0078508, 0.01177761, 0.01557493],
[0.0105829, 0.01576518, 0.02066746],
[0.01079997, 0.01656828, 0.02257487]])

Mads M. Pedersen
committed
def test_wrong_height():
ti = 0.1
ds = xr.Dataset(
data_vars={'Speedup': (['x', 'y', 'h'], np.arange(.8, 1.4, .1).reshape((3, 2, 1))),
'Sector_frequency': ('wd', f), 'Weibull_A': ('wd', A), 'Weibull_k': ('wd', k), 'TI': ti},
coords={'x': [0, 5, 10], 'y': [0, 5], 'h': [100], 'wd': np.linspace(0, 360, len(f), endpoint=False)})
site = XRSite(ds, shear=PowerShear(h_ref=100, alpha=.2), interp_method='linear')
y = np.arange(5)
x = y * 2
X, Y = np.meshgrid(x, y)
x_i, y_i = X.flatten(), Y.flatten()
wdir_lst = np.arange(0, 360, 90)
wsp_lst = np.arange(3, 6)
lw = site.local_wind(x_i=x_i, y_i=y_i, h_i=100, wd=wdir_lst, ws=wsp_lst)
def test_wd_independent_site():
ti = 0.1
ds = xr.Dataset(
data_vars={
'WS': 10, 'Sector_frequency': 1,
'Weibull_A': 4, 'Weibull_k': 2, 'TI': ti},
coords={})
site = XRSite(ds, shear=None)
npt.assert_equal(site.ds.sector_width, 360)
def test_load_save(complex_grid_site):
complex_grid_site.save(tfp + "tmp.nc")
site = XRSite.load(tfp + "tmp.nc", interp_method='linear')
test_complex_grid_local_wind(site)
def test_elevation():
ti = 0.1
ds = xr.Dataset(
data_vars={'Elevation': (['x', 'y'], np.arange(.8, 1.4, .1).reshape((3, 2))),
'P': 1, 'TI': ti},
coords={'x': [0, 5, 10], 'y': [0, 5]})
site = XRSite(ds)
npt.assert_array_almost_equal(site.elevation([2.5, 7.5], [2.5, 2.5]), [0.95, 1.15])
def test_plot_wd_distribution(complex_ws_site):
res = complex_ws_site.plot_wd_distribution()
ref = [0.0312, 0.0332, 0.043, 0.0568, 0.0648, 0.0567, 0.0718, 0.0967, 0.1199, 0.1154, 0.0809, 0.045]
print(np.round(res.squeeze().values, 4).tolist())
plt.show()
plt.close()
npt.assert_array_almost_equal(res.squeeze(), ref, 4)
def test_local_wind_P_diff_ws(complex_ws_site):
with pytest.raises(ValueError, match='Cannot interpolate ws-dependent P to other set of ws'):
complex_ws_site.local_wind([0], [0], 100, wd=np.arange(360), ws=10)
def test_cyclic_interpolation(uniform_site):
site = uniform_site
lw = site.local_wind([0], [0], 100, wd=np.arange(360), ws=10)
if 0:
plt.plot(np.linspace(0, 360, len(f) + 1), np.r_[f, f[0]], '.')
plt.plot(lw.wd, lw.P)
plt.show()
npt.assert_array_almost_equal(lw.P[::30], np.array(f) / 30)

Mads M. Pedersen
committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def test_from_flow_box_2wt():
site = Hornsrev1Site()
windTurbines = V80()
# simulate current and neighbour wt
wfm = BastankhahGaussian(site, windTurbines)
wd = np.arange(30)
sim_res = wfm([0, 0], [0, 500], wd=wd)
ref_aep = sim_res.aep().sel(wt=0)
wt_x, wt_y = [0], [0]
neighbour_x, neighbour_y = [0], [500]
# make site with effects of neighbour wt
sim_res = wfm(neighbour_x, neighbour_y, wd=wd)
e = 100
box = sim_res.flow_box(x=np.linspace(min(wt_x) - e, max(wt_x) + e, 21),
y=np.linspace(min(wt_y) - e, max(wt_y) + e, 21),
h=windTurbines.hub_height(windTurbines.types()))
site = XRSite.from_flow_box(box)
# Simujlate current wt and compare aep
wfm = BastankhahGaussian(site, windTurbines)
sim_res = wfm(wt_x, wt_y, wd=wd)
aep = sim_res.aep()
if 0:
site.ds.WS.sel(ws=10, wd=3).plot()
windTurbines.plot(wt_x, wt_y)
windTurbines.plot(neighbour_x, neighbour_y)
plt.show()
npt.assert_array_almost_equal(ref_aep, aep.sel(wt=0))
# import and setup site and windTurbines
site = IEA37Site(16)
# setup current, neighbour and all positions
wt_x, wt_y = site.initial_position.T
neighbour_x, neighbour_y = wt_x - 4000, wt_y
all_x, all_y = np.r_[wt_x, neighbour_x], np.r_[wt_y, neighbour_y]
windTurbines = WindTurbines.from_WindTurbines([IEA37_WindTurbines(), IEA37_WindTurbines()])
windTurbines._names = ["Current wind farm", "Neighbour wind farm"]
types = [0] * len(wt_x) + [1] * len(neighbour_x)
wf_model = PropagateDownwind(site, windTurbines,
wake_deficitModel=BastankhahGaussianDeficit(use_effective_ws=True),
superpositionModel=LinearSum())
# Consider wd=270 +/- 30 deg only
wd_lst = np.arange(240, 301)
sim_res, t = timeit(wf_model, verbose=False)(all_x, all_y, type=types, ws=9.8, wd=wd_lst)
flow_box = wf_model(neighbour_x, neighbour_y, wd=wd_lst).flow_box(
x=np.linspace(min(wt_x) - ext, max(wt_x) + ext, 53),
y=np.linspace(min(wt_y) - ext, max(wt_y) + ext, 51),
h=[100, 110, 120])
wake_site = XRSite.from_flow_box(flow_box)
wake_site.save('tmp.nc')
else:
wake_site = XRSite.load('tmp.nc')
wf_model_wake_site = PropagateDownwind(wake_site, windTurbines,
wake_deficitModel=BastankhahGaussianDeficit(use_effective_ws=True),
superpositionModel=LinearSum())
sim_res_wake_site, _ = timeit(wf_model_wake_site, verbose=False)(wt_x, wt_y, ws=9.8, wd=wd_lst)
npt.assert_allclose(sim_res.aep().sel(wt=np.arange(len(wt_x))).sum(), sim_res_wake_site.aep().sum(), rtol=0.0005)
npt.assert_array_almost_equal(sim_res.aep().sel(wt=np.arange(len(wt_x))), sim_res_wake_site.aep(), 2)
@pytest.mark.parametrize('h,wd,ws,h_i,wd_l,ws_k', [

Mads M. Pedersen
committed
([110], range(5, 25), [9, 10, 11], 110, [11.5, 12.5], [9.8, 10.2]),
([100, 110, 120], range(360), [9.8], 110, range(360), [9.8]),
([100, 110, 120], range(5, 25), [9.8], 110, range(10, 20), [9.8]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, range(10, 20), [10]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, range(10, 20), [10, 11]),
([100, 110, 120], range(5, 25), [8, 10, 11], 110, range(10, 20), [9.8]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, range(10, 20), [9.8]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, range(10, 20), [9.8, 10.2]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, [11.5, 12.5], [10]),
([100, 110, 120], range(5, 25), [9, 10, 11], 110, [11.5, 12.5], [10]),

Mads M. Pedersen
committed
([100, 110, 120], range(5, 25), [9, 10, 11], 110, [11.5, 12.5], [9.8, 10.2])
def test_interp(h, wd, ws, h_i, wd_l, ws_k):
ds = xr.Dataset({
'TI': 1,
'P': 1,
'XYHLK': (['x', 'y', 'h', 'wd', 'ws'], np.random.rand(10, 20, len(h), len(wd), len(ws))),
'XYHL': (['x', 'y', 'h', 'wd'], np.random.rand(10, 20, len(h), len(wd))),
'XYHK': (['x', 'y', 'h', 'ws'], np.random.rand(10, 20, len(h), len(ws))),
'K': (['ws'], np.random.rand(len(ws))),
'L': (['wd'], np.random.rand(len(wd))),
'KL': (['wd', 'ws'], np.random.rand(len(wd), len(ws))),
'XY': (['x', 'y'], np.random.rand(10, 20)),
'H': (['h'], np.random.rand(len(h))),
'XYH': (['x', 'y', 'h'], np.random.rand(10, 20, len(h))),
'XYL': (['x', 'y', 'wd'], np.random.rand(10, 20, len(wd))),
'XYK': (['x', 'y', 'ws'], np.random.rand(10, 20, len(ws))),
'I': (['i'], np.random.rand(2)),
'IL': (['i', 'wd'], np.random.rand(2, len(wd))),
'IK': (['i', 'ws'], np.random.rand(2, len(ws))),
'ILK': (['i', 'wd', 'ws'], np.random.rand(2, len(wd), len(ws))),
},
coords={'x': np.linspace(0, 100, 10),
'y': np.linspace(200, 300, 20),
'h': h,
'wd': wd,
)
site = XRSite(ds)
lw = LocalWind(x_i=[25, 50], y_i=[225, 250], h_i=h_i, wd=wd_l, ws=ws_k, wd_bin_size=1)

Mads M. Pedersen
committed
for n in ['XYHLK', 'XYHL', 'XYHK', 'K', 'L', 'KL', 'XY', 'H', 'XYH', 'XYL', 'XYK', 'I', 'IL', 'IK', 'ILK']:
ip1 = site.interp(site.ds[n], lw.coords)
ip2 = ds[n].sel_interp_all(lw.coords)
npt.assert_array_equal(ip1.shape, ip2.shape)

Mads M. Pedersen
committed
if not np.isnan(ip2).sum():
npt.assert_array_almost_equal(ip1.data, ip2.data)
wd = np.arange(5)
ws = np.arange(10)
ds = xr.Dataset({
'TI': (['i', 'wd', 'ws'], np.random.rand(10, len(wd), len(ws))),
'P': 1
},
coords={'i': np.arange(10),
'wd': wd,
'ws': ws}
)
site = XRSite(ds)
with pytest.raises(ValueError, match=r"Number of points, i\(=10\), in site data variable, TI, must match "):
lw = LocalWind(x_i=[25, 50], y_i=[225, 250], h_i=110, wd=wd, ws=ws, wd_bin_size=1)
site.interp(site.ds.TI, lw.coords)
x = y = np.arange(10)
lw = LocalWind(x_i=x, y_i=y, h_i=110, wd=wd, ws=ws, wd_bin_size=1)
ip1 = site.interp(site.ds.TI, lw.coords)
ip2 = ds.TI.sel_interp_all(lw.coords)
npt.assert_array_equal(ip1.shape, ip2.shape)
npt.assert_array_almost_equal(ip1.data, ip2.data)