Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from h5py.h5t import np
from py_wake.aep import AEP
from py_wake.examples.data.iea37 import iea37_path
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
from py_wake.examples.data.iea37.iea37_reader import read_iea37_windrose,\
read_iea37_windfarm
from py_wake.site._site import UniformSite
from py_wake.tests import npt
from py_wake.wake_models.noj import NOJ
from py_wake.examples.data import hornsrev1
from py_wake.wake_models.gaussian import IEA37SimpleBastankhahGaussian
def test_wake_map():
_, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
n_wt = 16
x, y, _ = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)
site = UniformSite(freq, ti=0.75)
windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
wake_model = NOJ(windTurbines)
aep = AEP(site, windTurbines, wake_model, np.arange(0, 360, 22.5), [9.8])
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
X, Y, Z = aep.wake_map(x_j, y_j, 110, x, y, wd=[0], ws=[9])
if 0:
import matplotlib.pyplot as plt
c = plt.contourf(X, Y, Z) # , np.arange(2, 10, .01))
plt.colorbar(c)
plt.plot(x, y, '2k')
for i, (x_, y_) in enumerate(zip(x, y)):
plt.annotate(i, (x_, y_))
plt.axis('equal')
plt.show()
ref = [3.27, 3.27, 9.0, 7.46, 7.46, 7.46, 7.46, 7.31, 7.31, 7.31, 7.31, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3]
npt.assert_array_almost_equal(Z[49, 100:133:2], ref, 2)
def test_aep_map():
_, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
n_wt = 16
x, y, _ = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)
x = [0, 0]
y = [0, 200]
site = UniformSite(freq, ti=0.75)
windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
wake_model = IEA37SimpleBastankhahGaussian(windTurbines)
aep = AEP(site, windTurbines, wake_model)
print(aep.calculate_AEP([0], [0]).sum())
x_j = np.arange(-150, 150, 20)
y_j = np.arange(-250, 250, 20)
X, Y, Z = aep.aep_map(x_j, y_j, 0, x, y, wd=[0])
print(y_j)
if 0:
import matplotlib.pyplot as plt
c = plt.contourf(X, Y, Z, 100) # , np.arange(2, 10, .01))
plt.colorbar(c)
plt.plot(x, y, '2k')
for i, (x_, y_) in enumerate(zip(x, y)):
plt.annotate(i, (x_, y_))
plt.axis('equal')
plt.show()
print(np.round(Z[17], 2).tolist())
ref = [21.5, 21.4, 21.02, 20.34, 18.95, 16.54, 13.17, 10.17, 10.17, 13.17, 16.54, 18.95, 20.34, 21.02, 21.4]
npt.assert_array_almost_equal(Z[17], ref, 2)
def test_aep_no_wake_loss():
_, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
n_wt = 16
x, y, _ = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)
x = [0, 0]
y = [0, 200]
site = UniformSite(freq, ti=0.75)
windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
wake_model = IEA37SimpleBastankhahGaussian(windTurbines)
aep = AEP(site, windTurbines, wake_model)
print(aep.calculate_AEP_no_wake_loss(x, y))