Skip to content
Snippets Groups Projects
aep_calculator.py 5.03 KiB
Newer Older
Mads M. Pedersen's avatar
Mads M. Pedersen committed
import numpy as np
from numpy import newaxis as na


Mads M. Pedersen's avatar
Mads M. Pedersen committed
class AEPCalculator():
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def __init__(self, site, windTurbines, wake_model):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """
        site: f(turbine_positions, wd, ws) -> WD[nWT,nWdir,nWsp], WS[nWT,nWdir,nWsp], TI[nWT,nWdir,nWsp), Weight[nWdir,nWsp]
        wake_model: f(turbine_positions, WD[nWT,nWdir,nWsp], WS[nWT,nWdir,nWsp], TI[nWT,nWdir,nWsp) -> power[nWdir,nWsp] (W)
        """
        self.site = site
        self.wake_model = wake_model
        self.windTurbines = windTurbines

    def _get_defaults(self, x_i, h_i, type_i, wd, ws):
        if type_i is None:
            type_i = np.zeros_like(x_i)
        if h_i is None:
            h_i = self.windTurbines.hub_height(type_i)
        if wd is None:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            wd = self.site.default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if ws is None:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ws = self.site.default_ws
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return h_i, type_i, wd, ws

    def _run_wake_model(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None):
        h_i, type_i, wd, ws = self._get_defaults(x_i, h_i, type_i, wd, ws)
        # Find local wind speed, wind direction, turbulence intensity and probability
        self.WD_ilk, self.WS_ilk, self.TI_ilk, self.P_lk = self.site.local_wind(x_i=x_i, y_i=y_i, wd=wd, ws=ws)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        # Calculate down-wind and cross-wind distances
        dw_iil, cw_iil, dh_iil, dw_order_l = self.site.wt2wt_distances(x_i, y_i, h_i, self.WD_ilk.mean(2))
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        self.WS_eff_ilk, self.TI_eff_ilk, self.power_ilk, self.ct_ilk =\
            self.wake_model.calc_wake(self.WS_ilk, self.TI_ilk, dw_iil, cw_iil, dh_iil, dw_order_l, type_i)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def calculate_AEP(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None):
        self._run_wake_model(x_i=x_i, y_i=y_i, h_i=h_i, type_i=type_i, wd=wd, ws=ws)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        AEP_GWh_ilk = self.power_ilk * self.P_lk[na, :, :] * 24 * 365 * 1e-9
        return AEP_GWh_ilk

    def calculate_AEP_no_wake_loss(self, x_i, y_i, h_i=None, type_i=None, wd=None, ws=None):
        h_i, type_i, wd, ws = self._get_defaults(x_i, h_i, type_i, wd=wd, ws=ws)

        # Find local wind speed, wind direction, turbulence intensity and probability
        self.WD_ilk, self.WS_ilk, self.TI_ilk, self.P_lk = self.site.local_wind(x_i=x_i, y_i=y_i, wd=wd, ws=ws)

        type_ilk = np.zeros(self.WS_ilk.shape, dtype=np.int) + type_i[:, np.newaxis, np.newaxis]
        self.power_ilk = self.windTurbines.power(self.WS_ilk, type_ilk)
        AEP_GWh_ilk = self.power_ilk * self.P_lk[na, :, :] * 24 * 365 * 1e-9
        return AEP_GWh_ilk

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def WS_eff_map(self, x_j, y_j, h, x_i, y_i, type_i, h_i, wd=None, ws=None):
        h_i, type_i, wd, ws = self._get_defaults(x_i, h_i, type_i, wd, ws)

        def f(x, N=500, ext=.2):
            ext *= (max(x) - min(x))
            return np.linspace(min(x) - ext, max(x) + ext, N)

        if x_j is None:
            x_j = f(x_i)
        if y_j is None:
            y_j = f(y_i)
        if h is None:
            h = np.mean(h_i)

        X_j, Y_j = np.meshgrid(x_j, y_j)
        x_j, y_j = X_j.flatten(), Y_j.flatten()
        if len(x_i) == 0:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            _, WS_jlk, _, P_lk = self.site.local_wind(x_i=x_j, y_i=y_j, wd=wd, ws=ws, wd_bin_size=1)
            return X_j, Y_j, WS_jlk, P_lk

Mads M. Pedersen's avatar
Mads M. Pedersen committed
        self._run_wake_model(x_i, y_i, h_i, type_i, wd, ws)

        h_j = np.zeros_like(x_j) + h
        _, WS_jlk, _, P_lk = self.site.local_wind(x_i=x_j, y_i=y_j, wd=wd, ws=ws)
        dw_ijl, cw_ijl, dh_ijl, _ = self.site.distances(x_i, y_i, h_i, x_j, y_j, h_j, self.WD_ilk.mean(2))
        WS_eff_jlk = self.wake_model.wake_map(self.WS_ilk, self.WS_eff_ilk, dw_ijl,
                                              cw_ijl, dh_ijl, self.ct_ilk, type_i, WS_jlk)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return X_j, Y_j, WS_eff_jlk, P_lk

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def wake_map(self, x_j=None, y_j=None, h=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None):
        X_j, Y_j, WS_eff_jlk, P_lk = self.WS_eff_map(x_j, y_j, h, wt_x, wt_y, wt_type, wt_height, wd, ws)
        return X_j, Y_j, (WS_eff_jlk * P_lk[na, :, :] / P_lk.sum()).sum((1, 2)).reshape(X_j.shape)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def plot_wake_map(self, x_j=None, y_j=None, h=None, wt_x=[], wt_y=[], wt_type=None, wt_height=None, wd=None, ws=None, ax=None, levels=100):
        import matplotlib.pyplot as plt
        if ax is None:
            ax = plt.gca()
        X, Y, Z = self.wake_map(x_j, y_j, h, wt_x, wt_y, wt_type, wt_height, wd, ws)
        c = ax.contourf(X, Y, Z, levels, cmap='Blues_r')
        plt.colorbar(c, label='wind speed [m/s]')

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def aep_map(self, x_j, y_j, type_j, x_i, y_i, type_i=None, h_i=None, wd=None, ws=None):
        h = self.windTurbines.hub_height(type_j)
        X_j, Y_j, WS_eff_jlk, P_lk = self.WS_eff_map(x_j, y_j, h, x_i, y_i, type_i, h_i, wd, ws)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        P_lk /= P_lk.sum()  # AEP if wind only comes from specified wd and ws

Mads M. Pedersen's avatar
Mads M. Pedersen committed
        # power_jlk = self.windTurbines.power_func(WS_eff_jlk, type_j)
        # aep_jlk = power_jlk * P_lk[na, :, :] * 24 * 365 * 1e-9
        # return X_j, Y_j, aep_jlk.sum((1, 2)).reshape(X_j.shape)

        # same as above but requires less memory
        return X_j, Y_j, ((self.windTurbines.power(WS_eff_jlk, type_j) * P_lk[na, :, :]).sum((1, 2)) * 24 * 365 * 1e-9).reshape(X_j.shape)