Skip to content
Snippets Groups Projects
_site.py 17.5 KiB
Newer Older
Mads M. Pedersen's avatar
Mads M. Pedersen committed
import numpy as np
from abc import ABC, abstractmethod

"""
suffixs:
- i: Local point (wind turbines)
- j: Local point (downstream turbines or positions)
- l: Wind directions
- k: Wind speeds
- m: Height above ground
Mads M. Pedersen's avatar
Mads M. Pedersen committed
"""
from numpy import newaxis as na
from scipy import interpolate
from py_wake.site.distance import StraightDistance
from py_wake.site.shear import NoShear, PowerShear
class LocalWind():
    def __init__(self, WD_ilk, WS_ilk, TI_ilk, P_ilk):
        """

        Parameters
        ----------
        WD_ilk : array_like
            local free flow wind directions
        WS_ilk : array_like
            local free flow wind speeds
        TI_ilk : array_like
            local free flow turbulence intensity
        P_ilk : array_like
            Probability/weight
        """
        self.WD_ilk = WD_ilk
        self.WS_ilk = WS_ilk
        self.TI_ilk = TI_ilk
        self.P_ilk = P_ilk


class Site(ABC):
    def __init__(self, distance):
        self.distance = distance
        self.default_ws = np.arange(3, 26.)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        self.default_wd = np.arange(360)

    def get_defaults(self, wd=None, ws=None):
        if wd is None:
            wd = self.default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            wd = np.atleast_1d(wd)
        if ws is None:
            ws = self.default_ws
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            ws = np.atleast_1d(ws)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    @abstractmethod
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def local_wind(self, x_i, y_i, h_i=None, wd=None, ws=None, wd_bin_size=None, ws_bins=None):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """Local free flow wind conditions

        Parameters
        ----------
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Local x coordinate
        y_i : array_like
            Local y coordinate
        h_i : array_like, optional
            Local h coordinate, i.e., heights above ground
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        wd : float, int or array_like, optional
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Global wind direction(s). Override self.default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws : float, int or array_like, optional
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Global wind speed(s). Override self.default_ws
        wd_bin_size : int or float, optional
            Size of wind direction bins. default is size between first and
            second element in default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws_bin : array_like or None, optional
            Wind speed bin edges
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        Returns
        -------
        LocalWind object containing:
            WD_ilk : array_like
                local free flow wind directions
            WS_ilk : array_like
                local free flow wind speeds
            TI_ilk : array_like
                local free flow turbulence intensity
            P_ilk : array_like
                Probability/weight
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """

    @abstractmethod
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def probability(self, x_i, y_i, h_i, WD_ilk, WS_ilk, wd_bin_size, ws_bins):
        """Probability of wind situation (wind speed and direction)

        Parameters
        ----------
        x_i : array_like
            Local x coordinate
        y_i : array_like
            Local y coordinate
        h_i : array_like
            Local height
            Wind speed
        wd_bin_size : int or float
            size of wind direction sectors
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws_bins : array_like
            ws bin edges, size=k+1
        P_ilk : float or array_like
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Probability of wind speed and direction at local positions
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def distances(self, src_x_i, src_y_i, src_h_i, dst_x_j, dst_y_j, dst_h_j, wd_il):
        """Calculate down/crosswind distance between source and destination points
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        Parameters
        ----------
        src_x_i : array_like
            Source x position
        src_y_i : array_like
            Source y position
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        src_h_i : array_like
            Source height above ground level
        dst_x_j : array_like
            Destination x position
        dst_y_j : array_like
            Destination y position
        dst_h_j : array_like
            Destination height above ground level
        wd_il : array_like, shape (#src, #wd)
            Local wind direction at the source points for all global wind directions


Mads M. Pedersen's avatar
Mads M. Pedersen committed
        Returns
        -------
        dw_ijl : array_like
Riccardo Riva's avatar
Riccardo Riva committed
            down wind distances. Positive downstream
Riccardo Riva's avatar
Riccardo Riva committed
            horizontal cross wind distances. Positive when the wind is in your
            back and  the turbine lies on the left.
        dh_ijl : array_like
            vertical distances
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        dw_order_indices_l : array_like
            indices that gives the downwind order of source points
        """
        return self.distance(self, src_x_i, src_y_i, src_h_i, dst_x_j, dst_y_j, dst_h_j, wd_il)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def wt2wt_distances(self, x_i, y_i, h_i, wd_il):
        return self.distances(x_i, y_i, h_i, x_i, y_i, h_i, wd_il)

    @abstractmethod
    def elevation(self, x_i, y_i):
        """Local terrain elevation (height above mean sea level)

        Parameters
        ----------
        x_i : array_like
            Local x coordinate
        y_i : array_like
            Local y coordinate

        Returns
        -------
        elevation : array_like
        """

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def wd_bin_size(self, wd, wd_bin_size=None):
        if wd_bin_size is not None:
            return wd_bin_size
        else:
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def ws_bins(self, ws, ws_bins=None):
        ws = np.asarray(ws)
        if hasattr(ws_bins, '__len__') and len(ws_bins) == len(ws) + 1:
            return ws_bins
        if len(ws.shape) and ws.shape[-1] > 1:
            d = np.diff(ws) / 2
            return np.maximum(np.concatenate(
                [ws[..., :1] - d[..., :1], ws[..., :-1] + d, ws[..., -1:] + d[..., -1:]], -1), 0)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            # ws is single value
            if ws_bins is None:
                ws_bins = 1
            return ws + np.array([-ws_bins / 2, ws_bins / 2])
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def plot_ws_distribution(self, x=0, y=0, h=70, wd=[0], include_wd_distribution=False, ax=None):
        """Plot wind speed distribution

        Parameters
        ----------
        x : int or float
            Local x coordinate
        y : int or float
            Local y coordinate
        h : int or float
            Local height above ground
        wd : int or array_like
            Wind direction(s) (one curve pr wind direction)
        include_wwd_distributeion : bool, default is False
            If true, the wind speed probability distributions are multiplied by
            the wind direction probability. The sector size is set to 360 / len(wd).
            This only makes sense if the wd array is evenly distributed
        ax : pyplot or matplotlib axes object, default None

        """
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if ax is None:
            import matplotlib.pyplot as plt
            ax = plt
        ws = np.arange(0.05, 30.05, .1)
        x = np.atleast_1d(x)
        y = np.atleast_1d(y)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        wd = np.atleast_1d(wd)
        for wd_ in wd:
            wd_bin_size = 360 / len(wd)

            if include_wd_distribution:
                v = wd_bin_size / 2
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                wd_l = np.arange(wd_ - v, wd_ + v) % 360
                WD_lk, WS_lk = np.meshgrid(wd_l, ws, indexing='ij')

Mads M. Pedersen's avatar
Mads M. Pedersen committed
                p = self.probability(x, y, h, WD_lk[na], WS_lk[na], wd_bin_size=1,
                                     ws_bins=self.ws_bins(WS_lk[na])).sum((0, 1))
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                lbl = r"Wind direction: %d$\pm$%s deg" % (wd_, (int(v), v)[(wd_bin_size % 2) != 0])
            else:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                #                 WD_lk = np.array([wd_])[:, na]
                #                 WS_lk = ws
                WD_lk, WS_lk = np.meshgrid([wd_], ws, indexing='ij')
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                p = self.probability(x, y, h, WD_lk[na, :, :], WS_lk[na, :, :],
                                     wd_bin_size=wd_bin_size, ws_bins=self.ws_bins(WS_lk[na, :, :]))[0, 0]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                p /= p.sum()
                lbl = "Wind direction: %d deg" % (wd_)

            ax.plot(ws, p * 10, label=lbl)
            ax.xlabel('Wind speed [m/s]')
            ax.ylabel('Probability')
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ax.legend(loc=1)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return p
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def plot_wd_distribution(self, x=0, y=0, h=70, n_wd=12, ws_bins=None, ax=None):
        """Plot wind direction (and speed) distribution

        Parameters
        ----------
        x : int or float
            Local x coordinate
        y : int or float
            Local y coordinate
        h : int or float
            Local height above ground
        n_wd : int
            Number of wind direction sectors
        ws_bins : None, int or array_like, default is None
            Splits the wind direction sector pies into different colors to show
            the probability of different wind speeds\n
            If int, number of wind speed bins in the range 0-30\n
            If array_like, limits of the wind speed bins limited by ws_bins,
            e.g. [0,10,20], will show 0-10 m/s and 10-20 m/s
        ax : pyplot or matplotlib axes object, default None
        """
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if ax is None:
            import matplotlib.pyplot as plt
            ax = plt
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        x = np.atleast_1d(x)
        y = np.atleast_1d(y)
        h = np.atleast_1d(h)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        wd = np.linspace(0, 360, n_wd, endpoint=False)
        theta = wd / 180 * np.pi
        if not ax.__class__.__name__ == 'PolarAxesSubplot':
            if hasattr(ax, 'subplot'):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                ax = ax.subplot(111, projection='polar')
            else:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                ax = ax.figure.add_subplot(111, projection='polar')
        ax.set_theta_direction(-1)
        ax.set_theta_offset(np.pi / 2.0)

        s = 360 / n_wd
        if ws_bins is None:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            WD_lk, WS_lk = np.meshgrid(np.arange(-s / 2, s / 2) + 1, [100], indexing='ij')

Mads M. Pedersen's avatar
Mads M. Pedersen committed
            p = [self.probability(x_i=x, y_i=y, h_i=h, WD_ilk=(WD_lk[na] + wd_) % 360,
                                  WS_ilk=WS_lk[na],
                                  wd_bin_size=1, ws_bins=[0, 200]).sum() for wd_ in wd]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ax.bar(theta, p, width=s / 180 * np.pi, bottom=0.0)
        else:
            if not hasattr(ws_bins, '__len__'):
                ws_bins = np.linspace(0, 30, ws_bins)
            else:
                ws_bins = np.asarray(ws_bins)
            ws = ((ws_bins[1:] + ws_bins[:-1]) / 2)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ws_bins = self.ws_bins(ws)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
            WD_lk, WS_lk = np.meshgrid(np.arange(-s / 2, s / 2) + 1, ws, indexing='ij')
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            p = [self.probability(x_i=x, y_i=y, h_i=h, WD_ilk=(WD_lk[na] + wd_) % 360, WS_ilk=WS_lk[na],
                                  wd_bin_size=1, ws_bins=ws_bins).sum((0, 1)) for wd_ in wd]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            cum_p = np.cumsum(p, 1).T
            start_p = np.vstack([np.zeros_like(cum_p[:1]), cum_p[:-1]])

            for ws1, ws2, p_ws1, p_ws2 in zip(ws_bins[:-1], ws_bins[1:], start_p, cum_p):
                ax.bar(theta, p_ws2 - p_ws1, width=s / 180 * np.pi, bottom=p_ws1, label="%s-%s m/s" % (ws1, ws2))
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ax.legend(bbox_to_anchor=(1.15, 1.1))

        ax.set_rlabel_position(-22.5)  # Move radial labels away from plotted line
        ax.grid(True)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return p
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed

    """Site with uniform (same wind over all, i.e. flat uniform terrain) and
    constant wind speed probability of 1. Only for one fixed wind speed
    """

    def __init__(self, p_wd, ti, ws=12, interp_method='piecewise', shear=NoShear()):
        self.default_ws = ws
        self.ti = Sector2Subsector(np.atleast_1d(ti), interp_method=interp_method)
        self.p_wd = Sector2Subsector(p_wd / np.sum(p_wd), interp_method=interp_method) / (360 / len(p_wd))
        self.shear = shear
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def probability(self, x_i, y_i, h_i, WD_ilk, WS_ilk, wd_bin_size, ws_bins):
        P_lk = np.ones_like(WS_ilk[0], dtype=np.float) * \
            self.p_wd[np.round(WD_ilk[0]).astype(int) % 360] * wd_bin_size
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def local_wind(self, x_i=None, y_i=None, h_i=None, wd=None, ws=None, wd_bin_size=None, ws_bins=None):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if wd is None:
            wd = self.default_wd
        if ws is None:
            ws = self.default_ws

Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws_bins = self.ws_bins(ws, ws_bins)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        wd_bin_size = self.wd_bin_size(wd, wd_bin_size)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        WD_ilk, WS_ilk = [np.tile(W, (len(x_i), 1, 1)).astype(np.float)
                          for W in np.meshgrid(wd, ws, indexing='ij')]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        WD_index_ilk = np.round(WD_ilk).astype(int)
        if h_i is not None:
            WS_ilk = self.shear(WS_ilk, WD_ilk, h_i)
        TI_ilk = self.ti[WD_index_ilk]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        P_ilk = self.probability(0, 0, 0, WD_ilk, WS_ilk, wd_bin_size, ws_bins)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def elevation(self, x_i, y_i):
        return np.zeros_like(x_i)


class UniformWeibullSite(UniformSite):
    """Site with uniform (same wind over all, i.e. flat uniform terrain) and
    weibull distributed wind speed
    """

    def __init__(self, p_wd, a, k, ti, interp_method='nearest', shear=NoShear()):
        """Initialize UniformWeibullSite

        Parameters
        ----------
        p_wd : array_like
            Probability of wind direction sectors
        a : array_like
            Weilbull scaling parameter of wind direction sectors
        k : array_like
            Weibull shape parameter
        ti : float or array_like
            Turbulence intensity
        interp_method : 'nearest', 'linear' or 'spline'
            p_wd, a, k, ti and alpha are interpolated to 1 deg sectors using this
            method
        shear : Shear object
            Shear object, e.g. NoShear(), PowerShear(h_ref, alpha)

        Notes
        ------
        The wind direction sectors will be: [0 +/- w/2, w +/- w/2, ...]
        where w is 360 / len(p_wd)

        """
        super().__init__(p_wd, ti, interp_method=interp_method, shear=shear)
        self.default_ws = np.arange(3, 26)
        self.a = Sector2Subsector(a, interp_method=interp_method)
        self.k = Sector2Subsector(k, interp_method=interp_method)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def weibull_weight(self, WS, A, k, ws_bins):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        def cdf(ws, A=A, k=k):
            return 1 - np.exp(-(ws / A) ** k)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws_bins = np.asarray(ws_bins)
        return cdf(ws_bins[..., 1:]) - cdf(ws_bins[..., :-1])
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def probability(self, x_i, y_i, h_i, WD_ilk, WS_ilk, wd_bin_size, ws_bins):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        i_ilk = np.round(WD_ilk).astype(int) % 360
        p_wd_ilk = self.p_wd[i_ilk] * wd_bin_size
            p_wd_ilk[:] = 1
        P_ilk = self.weibull_weight(WS_ilk, self.a[i_ilk], self.k[i_ilk], ws_bins) * p_wd_ilk
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return P_ilk
Mads M. Pedersen's avatar
Mads M. Pedersen committed
def Sector2Subsector(para, axis=-1, wd_binned=None, interp_method='piecewise'):
    """ Expand para on the wind direction dimension, i.e., increase the nubmer
    of sectors (sectors to subsectors), by interpolating between sectors, using
    specified method.

    Parameters
    ----------
    para : array_like
        Parameter to be expand, it can be sector-wise Weibull A, k, frequency.
    axis : integer
        Denotes which dimension of para corresponds to wind direction.
    wd_binned : array_like
        Wind direction of subsectors to be expanded to.
    inter_method : string
        'piecewise'/'linear'/'spline', based on interp1d in scipy.interpolate,
        'spline' means cubic spline.

    --------------------------------------
    Note: the interpolating method for sector-wise Weibull distributions and
    joint distribution of wind speed and wind direction is referred to the
    following paper:
        Feng, J. and Shen, W.Z., 2015. Modelling wind for wind farm layout
        optimization using joint distribution of wind speed and wind direction.
        Energies, 8(4), pp.3075-3092. [https://doi.org/10.3390/en8043075]
    """
    if wd_binned is None:
        wd_binned = np.arange(360)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    para = np.array(para)
    num_sector = para.shape[axis]
    wd_sector = np.linspace(0, 360, num_sector, endpoint=False)

    try:
        interp_index = ['nearest', 'piecewise', 'linear', 'spline'].index(interp_method)
        interp_kind = ['nearest', 'nearest', 'linear', 'cubic'][interp_index]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    except ValueError:
        raise NotImplementedError(
            'interp_method={0} not implemeted yet.'.format(interp_method))
    wd_sector_extended = np.hstack((wd_sector, 360.0))
    para_sector_extended = np.concatenate((para, para.take([0], axis=axis)),
                                          axis=axis)
    if interp_kind == 'cubic' and len(wd_sector_extended) < 4:
        interp_kind = 'linear'
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    f_interp = interpolate.interp1d(wd_sector_extended, para_sector_extended,
                                    kind=interp_kind, axis=axis)
    para_expanded = f_interp(wd_binned % 360)

    return para_expanded


Mads M. Pedersen's avatar
Mads M. Pedersen committed
def main():
    if __name__ == '__main__':
        f = [0.035972, 0.039487, 0.051674, 0.070002, 0.083645, 0.064348,
             0.086432, 0.117705, 0.151576, 0.147379, 0.10012, 0.05166]
        A = [9.176929, 9.782334, 9.531809, 9.909545, 10.04269, 9.593921,
             9.584007, 10.51499, 11.39895, 11.68746, 11.63732, 10.08803]
        k = [2.392578, 2.447266, 2.412109, 2.591797, 2.755859, 2.595703,
             2.583984, 2.548828, 2.470703, 2.607422, 2.626953, 2.326172]
        ti = .1
        h_ref = 100
        alpha = .1
        site = UniformWeibullSite(f, A, k, ti, shear=PowerShear(h_ref=h_ref, alpha=alpha))

        x_i = y_i = np.arange(5)
        wdir_lst = np.arange(0, 360, 90)
        wsp_lst = np.arange(1, 20)
        local_wind = site.local_wind(x_i=x_i, y_i=y_i, wd=wdir_lst, ws=wsp_lst)
        print(local_wind.WS_ilk.shape)
        import matplotlib.pyplot as plt

        site.plot_ws_distribution(0, 0, wdir_lst)

        plt.figure()
        z = np.arange(1, 100)
        u = [site.local_wind(x_i=[0], y_i=[0], h_i=[z_], wd=0, ws=10).WS_ilk[0][0] for z_ in z]
        plt.plot(u, z)
        plt.xlabel('Wind speed [m/s]')
        plt.ylabel('Height [m]')
        plt.show()


main()