Newer
Older
import os
import struct
import numpy as np
from py_wake.wake_model import LinearSum, WakeModel
from numpy import newaxis as na
class FugaWakeModel(WakeModel, LinearSum):
ams = 5
invL = 0
args4deficit = ['WS_lk', 'WS_eff_lk', 'dw_jl', 'cw_jl', 'ct_lk']
def __init__(self, LUT_path, windTurbines):
WakeModel.__init__(self, windTurbines)
self.load(LUT_path)
def load(self, path):
with open(path + 'CaseData.bin', 'rb') as fid:
case_name = struct.unpack('127s', fid.read(127))[0]
r = struct.unpack('d', fid.read(8))[0]
zhub = struct.unpack('d', fid.read(8))[0]
lo_level = struct.unpack('I', fid.read(4))[0]
hi_level = struct.unpack('I', fid.read(4))[0]
z0 = struct.unpack('d', fid.read(8))[0]
zi = struct.unpack('d', fid.read(8))[0]
ds = struct.unpack('d', fid.read(8))[0]
zeta0 = struct.unpack('d', fid.read(8))[0]
def psim(zeta):
return self.ams * zeta
if not zeta0 >= 0:
raise NotImplementedError # See Colonel.u2b.psim
factor = 1 / (1 - (psim(zhub * self.invL) - psim(zeta0)) / np.log(zhub / z0))
f = [f for f in os.listdir(path) if f.endswith("input.par")][0]
# z0_zi_zeta0 = os.path.split(os.path.dirname(path))[1]
# z0, zi, zeta0 = re.match('Z0=(\d+.\d+)Zi=(\d+)Zeta0=(\d+.\d+E\+\d+)', z0_zi_zeta0).groups()
with open(path + f) as fid:
lines = fid.readlines()
prefix = lines[0].strip()
nxW, nyW = map(int, lines[2:4])
dx, dy, sigmax, sigmay = map(float, lines[4:8])
self.lo_level, self.hi_level = map(int, lines[11:13])
self.dsAll = ds
zlevels = np.arange(self.lo_level, self.hi_level + 1)
mdu = [np.fromfile(path + prefix + '%04dUL.dat' % j, np.dtype('<f'), -1)
for j in zlevels]
self.du = -np.array(mdu, dtype=np.float32).reshape((len(mdu), nyW // 2, nxW)) * factor
self.z0 = z0
self.x0 = nxW // 4
self.dx = dx
self.x = np.arange(-self.x0, nxW * 3 / 4) * dx
self.y = np.arange(nyW // 2) * dy
self.dy = dy
self.z = z0 * np.exp(zlevels * self.dsAll)

Mads M. Pedersen
committed
self.lut_interpolator = LUTInterpolator(self.x, self.y, self.z, self.du)
def interpolate(self, x, y, z):
x = np.maximum(np.minimum(x, self.x[-1]), self.x[0])
y = np.maximum(np.minimum(y, self.y[-1]), self.y[0])
z = np.maximum(np.minimum(z, self.z[-1]), self.z[0])

Mads M. Pedersen
committed
return self.lut_interpolator((x, y, z))
def calc_deficit(self, WS_lk, WS_eff_lk, dw_jl, cw_jl, ct_lk):
mdu_jl = self.interpolate(dw_jl, cw_jl, 70)

Mads M. Pedersen
committed
deficit_jlk = mdu_jl[:, :, na] * (ct_lk * WS_eff_lk**2 / WS_lk)

Mads M. Pedersen
committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
class LUTInterpolator(object):
# Faster than scipy.interpolate.interpolate.RegularGridInterpolator
def __init__(self, x, y, z, V):
self.x = x
self.y = y
self.z = z
self.V = V
self.nx = nx = len(x)
self.ny = ny = len(y)
self.nz = nz = len(z)
assert V.shape == (nz, ny, nx)
self.dx, self.dy = [xy[1] - xy[0] for xy in [x, y]]
self.x0 = x[0]
self.y0 = y[0]
Ve = np.concatenate((V, V[-1:]), 0)
Ve = np.concatenate((Ve, Ve[:, -1:]), 1)
Ve = np.concatenate((Ve, Ve[:, :, -1:]), 2)
self.V000 = np.array([V,
Ve[:-1, :-1, 1:],
Ve[:-1, 1:, :-1],
Ve[:-1, 1:, 1:],
Ve[1:, :-1, :-1],
Ve[1:, :-1, 1:],
Ve[1:, 1:, :-1],
Ve[1:, 1:, 1:]]).reshape((8, nz * ny * nx))
def __call__(self, xyz):
xp, yp, zp = xyz
def i0f2(_i):
_if, _i0 = np.modf(_i)
_i0 = _i0.astype(np.int)
return _i0, _if
def i0f(_i):
_i0 = np.asarray(_i).astype(np.int)
_if = _i - _i0
return _i0, _if
xi0, xif = i0f((xp - self.x0) / self.dx)
yi0, yif = i0f((yp - self.y0) / self.dy)
zi0, zif = i0f(np.interp(zp, self.z, np.arange(self.nz)))
nx, ny = self.nx, self.ny
v000, v001, v010, v011, v100, v101, v110, v111 = self.V000[:, zi0 * nx * ny + yi0 * nx + xi0]
v_00 = v000 + (v100 - v000) * zif
v_01 = v001 + (v101 - v001) * zif
v_10 = v010 + (v110 - v010) * zif
v_11 = v011 + (v111 - v011) * zif
v__0 = v_00 + (v_10 - v_00) * yif
v__1 = v_01 + (v_11 - v_01) * yif
return (v__0 + (v__1 - v__0) * xif)
# # Slightly slower
# xif1, yif1, zif1 = 1 - xif, 1 - yif, 1 - zif
# w = np.array([xif1 * yif1 * zif1,
# xif * yif1 * zif1,
# xif1 * yif * zif1,
# xif * yif * zif1,
# xif1 * yif1 * zif,
# xif * yif1 * zif,
# xif1 * yif * zif,
# xif * yif * zif])
#
# return np.sum(w * self.V01[:, zi0, yi0, xi0], 0)
def main():
if __name__ == '__main__':
from py_wake.aep._aep import AEP
from py_wake.examples.data.iea37 import iea37_path
from py_wake.examples.data.iea37.iea37_reader import read_iea37_windrose,\
read_iea37_windfarm
from py_wake.site._site import UniformSite
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
_, _, freq = read_iea37_windrose(iea37_path + "iea37-windrose.yaml")
n_wt = 16
x, y, _ = read_iea37_windfarm(iea37_path + 'iea37-ex%d.yaml' % n_wt)
site = UniformSite(freq, ti=0.75)
windTurbines = IEA37_WindTurbines(iea37_path + 'iea37-335mw.yaml')
import matplotlib.pyplot as plt
x_j = np.linspace(-1500, 1500, 500)
y_j = np.linspace(-1500, 1500, 300)
from py_wake.tests.test_files import tfp
path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/'
wake_model = FugaWakeModel(path, windTurbines)
aep = AEP(site, windTurbines, wake_model)
X, Y, Z = aep.wake_map(x_j, y_j, 110, x, y, wd=[0], ws=[9])
plt.figure()
c = plt.contourf(X, Y, Z, 100)
plt.colorbar(c)
plt.plot(x, y, '2k')
for i, (x_, y_) in enumerate(zip(x, y)):
plt.annotate(i, (x_, y_))
plt.axis('equal')
plt.show()
main()