Newer
Older

Mads M. Pedersen
committed
import numpy as np
from py_wake.deficit_models.deficit_model import DeficitModel, WakeDeficitModel, BlockageDeficitModel

Mads M. Pedersen
committed
from py_wake.superposition_models import LinearSum
from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative
from py_wake.rotor_avg_models.rotor_avg_model import RotorCenter

Mads M. Pedersen
committed
from py_wake.tests.test_files import tfp
from py_wake.utils.grid_interpolator import GridInterpolator
from pathlib import Path
class FugaUtils():
def __init__(self, path, on_mismatch='raise'):
"""
Parameters
----------
path : string
Path to folder containing 'CaseData.bin', input parameter file (*.par) and loop-up tables
on_mismatch : {'raise', 'casedata','input_par'}
Determines how to handle mismatch between info from CaseData.in and input.par.
If 'raise' a ValueError exception is raised in case of mismatch\n
If 'casedata', the values from CaseData.bin is used\n
If 'input_par' the values from the input parameter file (*.par) is used
"""
self.path = Path(path)
with open(self.path / 'CaseData.bin', 'rb') as fid:

Mads M. Pedersen
committed
case_name = struct.unpack('127s', fid.read(127))[0] # @UnusedVariable
self.r = struct.unpack('d', fid.read(8))[0] # @UnusedVariable
self.zHub = struct.unpack('d', fid.read(8))[0]
self.low_level = struct.unpack('I', fid.read(4))[0]
self.high_level = struct.unpack('I', fid.read(4))[0]
self.z0 = struct.unpack('d', fid.read(8))[0]

Mads M. Pedersen
committed
zi = struct.unpack('d', fid.read(8))[0] # @UnusedVariable
self.ds = struct.unpack('d', fid.read(8))[0]
closure = struct.unpack('I', fid.read(4))[0]
if os.path.getsize(self.path / 'CaseData.bin') == 187:
self.zeta0 = struct.unpack('d', fid.read(8))[0]
# with open(path + 'CaseData.bin', 'rb') as fid2:
# info = fid2.read(127).decode()
# zeta0 = float(info[info.index('Zeta0'):].replace("Zeta0=", ""))
if 'Zeta0' in self.path.name:
self.zeta0 = float(self.path.name[self.path.name.index(
'Zeta0'):].replace("Zeta0=", "").replace("/", ""))
f = [f for f in os.listdir(self.path) if f.endswith('.par')][0]
lines = (self.path / f).read_text().split("\n")
self.prefix = lines[0].strip()
self.nx, self.ny = map(int, lines[2:4])
self.dx, self.dy = map(float, lines[4:6]) # @UnusedVariable
self.sigmax, self.sigmay = map(float, lines[6:8]) # @UnusedVariable
def set_Value(n, v):
if on_mismatch == 'raise' and getattr(self, n) != v:
raise ValueError("Mismatch between CaseData.bin and %s: %s %s!=%s" % (f, n, getattr(self, n), v))
elif on_mismatch == 'input_par':
setattr(self, n, v)
set_Value('low_level', int(lines[11]))
set_Value('high_level', int(lines[12]))
set_Value('z0', float(lines[8])) # roughness level
set_Value('zHub', float(lines[10])) # hub height
self.nx0 = self.nx // 4
self.ny0 = self.ny // 2
self.x = np.arange(-self.nx0, self.nx * 3 / 4) * self.dx # rotor is located 1/4 downstream
self.y = np.arange(self.ny // 2) * self.dy
self.zlevels = np.arange(self.low_level, self.high_level + 1)
if self.low_level == self.high_level == 9999:
self.z = [self.zHub]
else:
self.z = self.z0 * np.exp(self.zlevels * self.ds)
def mirror(self, x, anti_symmetric=False):
x = np.asarray(x)
return np.concatenate([((1, -1)[anti_symmetric]) * x[::-1], x[1:]])
def load_luts(self, UVLT=['UL', 'UT', 'VL', 'VT'], zlevels=None):
luts = np.array([[np.fromfile(str(self.path / (self.prefix + '%04d%s.dat' % (j, uvlt))), np.dtype('<f'), -1)
for j in (zlevels or self.zlevels)] for uvlt in UVLT]).astype(np.float)
return luts.reshape((len(UVLT), len(zlevels or self.zlevels), self.ny // 2, self.nx))
class FugaDeficit(WakeDeficitModel, BlockageDeficitModel, FugaUtils):
ams = 5
invL = 0
args4deficit = ['WS_ilk', 'WS_eff_ilk', 'dw_ijlk', 'hcw_ijlk', 'dh_ijl', 'h_il', 'ct_ilk', 'D_src_il']
def __init__(self, LUT_path=tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/', remove_wriggles=False):
"""
Parameters
----------
LUT_path : str
Path to folder containing 'CaseData.bin', input parameter file (*.par) and loop-up tables
remove_wriggles : bool
The current Fuga loop-up tables have significan wriggles.
If True, all deficit values after the first zero crossing (when going from the center line
and out in the lateral direction) is set to zero.
This means that all speed-up regions are also removed
"""
BlockageDeficitModel.__init__(self, upstream_only=True)
FugaUtils.__init__(self, LUT_path, on_mismatch='input_par')
self.remove_wriggles = remove_wriggles
self.lut_interpolator = LUTInterpolator(*self.load())
def load(self):
if not self.zeta0 >= 0: # pragma: no cover
factor = 1 / (1 - (psim(self.zHub * self.invL) - psim(self.zeta0)) / np.log(self.zHub / self.z0))
mdu = self.load_luts(['UL'])[0]
du = -np.array(mdu, dtype=np.float32).reshape((len(mdu), self.ny // 2, self.nx)) * factor
if self.remove_wriggles:
# remove all positive and negative deficits after first zero crossing in lateral direction
du *= (np.cumsum(du < 0, 1) == 0)
# smooth edges to zero
n = 250
du[:, :, :n] = du[:, :, n][:, :, na] * np.arange(n) / n
du[:, :, -n:] = du[:, :, -n][:, :, na] * np.arange(n)[::-1] / n
n = 50
du[:, -n:, :] = du[:, -n, :][:, na, :] * np.arange(n)[::-1][na, :, na] / n
return self.x, self.y, self.z, du
# self.grid_interplator(np.array([zyx.flatten() for zyx in [z, y, x]]).T, check_bounds=False).reshape(x.shape)

Mads M. Pedersen
committed
return self.lut_interpolator((x, y, z))

Mads M. Pedersen
committed
def _calc_layout_terms(self, dw_ijlk, hcw_ijlk, h_il, dh_ijl, D_src_il, **_):

Mads M. Pedersen
committed

Mads M. Pedersen
committed
self.mdu_ijlk = self.interpolate(dw_ijlk, np.abs(hcw_ijlk), (h_il[:, na] + dh_ijl)[:, :, :, na]) * \
~((dw_ijlk == 0) & (hcw_ijlk <= D_src_il[:, na, :, na]) # avoid wake on itself
)
def calc_deficit(self, WS_ilk, WS_eff_ilk, dw_ijlk, hcw_ijlk, dh_ijl, h_il, ct_ilk, D_src_il, **kwargs):
if not self.deficit_initalized:
self._calc_layout_terms(dw_ijlk, hcw_ijlk, h_il, dh_ijl, D_src_il, **kwargs)

Mads M. Pedersen
committed
return self.mdu_ijlk * (ct_ilk * WS_eff_ilk**2 / WS_ilk)[:, na]
def wake_radius(self, D_src_il, dw_ijlk, **_):

Mads M. Pedersen
committed
# Set at twice the source radius for now
return np.zeros_like(dw_ijlk) + D_src_il[:, na, :, na]

Mads M. Pedersen
committed

Mads M. Pedersen
committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
class LUTInterpolator(object):
# Faster than scipy.interpolate.interpolate.RegularGridInterpolator
def __init__(self, x, y, z, V):
self.x = x
self.y = y
self.z = z
self.V = V
self.nx = nx = len(x)
self.ny = ny = len(y)
self.nz = nz = len(z)
assert V.shape == (nz, ny, nx)
self.dx, self.dy = [xy[1] - xy[0] for xy in [x, y]]
self.x0 = x[0]
self.y0 = y[0]
Ve = np.concatenate((V, V[-1:]), 0)
Ve = np.concatenate((Ve, Ve[:, -1:]), 1)
Ve = np.concatenate((Ve, Ve[:, :, -1:]), 2)
self.V000 = np.array([V,
Ve[:-1, :-1, 1:],
Ve[:-1, 1:, :-1],
Ve[:-1, 1:, 1:],
Ve[1:, :-1, :-1],
Ve[1:, :-1, 1:],
Ve[1:, 1:, :-1],
Ve[1:, 1:, 1:]]).reshape((8, nz * ny * nx))
def __call__(self, xyz):
xp, yp, zp = xyz
xp = np.maximum(np.minimum(xp, self.x[-1]), self.x[0])
yp = np.maximum(np.minimum(yp, self.y[-1]), self.y[0])
# zp = np.maximum(np.minimum(zp, self.z[-1]), self.z[0])

Mads M. Pedersen
committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def i0f(_i):
_i0 = np.asarray(_i).astype(np.int)
_if = _i - _i0
return _i0, _if
xi0, xif = i0f((xp - self.x0) / self.dx)
yi0, yif = i0f((yp - self.y0) / self.dy)
zi0, zif = i0f(np.interp(zp, self.z, np.arange(self.nz)))
nx, ny = self.nx, self.ny
v000, v001, v010, v011, v100, v101, v110, v111 = self.V000[:, zi0 * nx * ny + yi0 * nx + xi0]
v_00 = v000 + (v100 - v000) * zif
v_01 = v001 + (v101 - v001) * zif
v_10 = v010 + (v110 - v010) * zif
v_11 = v011 + (v111 - v011) * zif
v__0 = v_00 + (v_10 - v_00) * yif
v__1 = v_01 + (v_11 - v_01) * yif
return (v__0 + (v__1 - v__0) * xif)
# # Slightly slower
# xif1, yif1, zif1 = 1 - xif, 1 - yif, 1 - zif
# w = np.array([xif1 * yif1 * zif1,
# xif * yif1 * zif1,
# xif1 * yif * zif1,
# xif * yif * zif1,
# xif1 * yif1 * zif,
# xif * yif1 * zif,
# xif1 * yif * zif,
# xif * yif * zif])
#
# return np.sum(w * self.V01[:, zi0, yi0, xi0], 0)

Mads M. Pedersen
committed
class Fuga(PropagateDownwind):
def __init__(self, LUT_path, site, windTurbines,
rotorAvgModel=RotorCenter(), deflectionModel=None, turbulenceModel=None, remove_wriggles=False):

Mads M. Pedersen
committed
"""
Parameters
----------
LUT_path : str
path to look up tables
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
rotorAvgModel : RotorAvgModel
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only

Mads M. Pedersen
committed
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
"""
PropagateDownwind.__init__(self, site, windTurbines,
wake_deficitModel=FugaDeficit(LUT_path, remove_wriggles=remove_wriggles),
rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),

Mads M. Pedersen
committed
deflectionModel=deflectionModel, turbulenceModel=turbulenceModel)
class FugaBlockage(All2AllIterative):
def __init__(self, LUT_path, site, windTurbines,
rotorAvgModel=RotorCenter(),
deflectionModel=None, turbulenceModel=None, convergence_tolerance=1e-6, remove_wriggles=False):

Mads M. Pedersen
committed
"""
Parameters
----------
LUT_path : str
path to look up tables
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
rotorAvgModel : RotorAvgModel
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only

Mads M. Pedersen
committed
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
"""
fuga_deficit = FugaDeficit(LUT_path, remove_wriggles=remove_wriggles)

Mads M. Pedersen
committed
All2AllIterative.__init__(self, site, windTurbines, wake_deficitModel=fuga_deficit,
rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),
deflectionModel=deflectionModel, blockage_deficitModel=fuga_deficit,
turbulenceModel=turbulenceModel, convergence_tolerance=convergence_tolerance)

Mads M. Pedersen
committed
if __name__ == '__main__':
from py_wake.examples.data.iea37._iea37 import IEA37Site
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines

Mads M. Pedersen
committed
import matplotlib.pyplot as plt

Mads M. Pedersen
committed
# setup site, turbines and wind farm model
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/'

Mads M. Pedersen
committed
for wf_model in [Fuga(path, site, windTurbines),
FugaBlockage(path, site, windTurbines)]:
plt.figure()
print(wf_model)

Mads M. Pedersen
committed
# run wind farm simulation
sim_res = wf_model(x, y)
# calculate AEP

Mads M. Pedersen
committed
# plot wake map
flow_map = sim_res.flow_map(wd=30, ws=9.8)
flow_map.plot_wake_map()
flow_map.plot_windturbines()
plt.title('AEP: %.2f GWh' % aep)
plt.show()
plt.show()
main()