Newer
Older
import numpy as np
from py_wake.deficit_models.deficit_model import DeficitModel, WakeDeficitModel, BlockageDeficitModel
from py_wake.deficit_models.fuga import FugaDeficit, Fuga
from py_wake.deficit_models.gaussian import BastankhahGaussianDeficit, IEA37SimpleBastankhahGaussianDeficit,\
ZongGaussianDeficit, NiayifarGaussianDeficit, BastankhahGaussian, IEA37SimpleBastankhahGaussian, ZongGaussian,\
NiayifarGaussian
from py_wake.deficit_models.gcl import GCLDeficit, GCL, GCLLocal
from py_wake.deficit_models.noj import NOJDeficit, NOJ, NOJLocalDeficit, NOJLocal
from py_wake.deficit_models.selfsimilarity import SelfSimilarityDeficit
from py_wake.examples.data.hornsrev1 import Hornsrev1Site
from py_wake.examples.data.iea37 import iea37_path
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines, IEA37Site
from py_wake.examples.data.iea37.iea37_reader import read_iea37_windfarm
from py_wake.flow_map import HorizontalGrid, XYGrid
from py_wake.superposition_models import SquaredSum, WeightedSum
from py_wake.tests import npt
from py_wake.tests.test_files import tfp
from py_wake.turbulence_models.gcl_turb import GCLTurbulence
from py_wake.turbulence_models.stf import STF2017TurbulenceModel
from py_wake.utils.get_models import get_models
from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative

Mads M. Pedersen
committed
class GCLLocalDeficit(GCLDeficit):
def __init__(self):
GCLDeficit.__init__(self, use_effective_ws=True, use_effective_ti=True)
@pytest.mark.parametrize(
'deficitModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(), (367205.0846866496, [9833.86287, 8416.99088, 10820.37673, 13976.26422, 22169.66036,
25234.9215, 37311.64388, 42786.37028, 24781.33444, 13539.82115,
14285.22744, 31751.29488, 75140.15677, 17597.10319, 11721.21226,
7838.84383])),
(NOJLocalDeficit(), (335151.6404628441, [8355.71335, 7605.92379, 10654.172, 13047.6971, 19181.46408,
23558.34198, 36738.52415, 38663.44595, 21056.39764, 12042.79324,
13813.46269, 30999.42279, 63947.61202, 17180.40299, 11334.12323,
6972.14345])),
(BastankhahGaussianDeficit(), (355971.9717035484,
[9143.74048, 8156.71681, 11311.92915, 13955.06316, 19807.65346,
25196.64182, 39006.65223, 41463.31044, 23042.22602, 12978.30551,
14899.26913, 32320.21637, 67039.04091, 17912.40907, 12225.04134,
7513.75582])),
(IEA37SimpleBastankhahGaussianDeficit(), read_iea37_windfarm(iea37_path + 'iea37-ex16.yaml')[2]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00014617Zi=00399Zeta0=0.00E+0/'),
(398938.8941139709, [9632.92248, 9733.98766, 12462.98413, 15332.30502, 22199.91899,
27683.32851, 42975.80734, 49481.10395, 24274.96466, 15416.63681,
16681.20957, 35508.27583, 75263.59612, 19679.2854, 13687.14632,
8925.42131])),
(GCLDeficit(), (370863.6246093183,
[9385.75387, 8768.52105, 11450.13309, 14262.42186, 21178.74926,
25751.59502, 39483.21753, 44573.31533, 23652.09976, 13924.58752,
15106.11692, 32840.02909, 71830.22035, 18200.49805, 12394.7626,
(GCLLocalDeficit(), (381187.36105425097,
[9678.85358, 9003.65526, 11775.06899, 14632.42259, 21915.85495,
26419.65189, 40603.68618, 45768.58091, 24390.71103, 14567.43106,
15197.82861, 32985.67922, 75062.92788, 18281.21981, 12470.01322,
8433.77587])),
(ZongGaussianDeficit(),
(354263.1062694012, [8960.58672, 8095.48341, 11328.51572, 13924.50408, 19938.78428,
25141.4657, 39063.84731, 41152.04065, 22580.67854, 12944.55424,
14778.95385, 32294.41749, 66540.62665, 17898.1109, 12126.32111,
7494.21561])),
(NiayifarGaussianDeficit(),
(362228.4003016239, [9210.01349, 8330.06642, 11392.04851, 14082.13366, 20643.45247,
25426.07466, 39282.9259, 42344.50431, 23209.23399, 13390.08421,
14807.66824, 32535.89096, 69640.3283, 18031.93957, 12149.88163,
7752.15401])),
])
def test_IEA37_ex16(deficitModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()

Mads M. Pedersen
committed
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel,
superpositionModel=SquaredSum(), turbulenceModel=GCLTurbulence())
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000

Mads M. Pedersen
committed
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.11)

Mads M. Pedersen
committed
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.15)

Mads M. Pedersen
committed
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)
@pytest.mark.parametrize(
'deficitModel,ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(),
[3.27, 3.27, 9.0, 7.46, 7.46, 7.46, 7.46, 7.31, 7.31, 7.31, 7.31, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3]),
(NOJLocalDeficit(),
[3.09, 3.09, 9., 9., 5.54, 5.54, 5.54, 5.54, 5.54, 5.54, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73]),
(BastankhahGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.96, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.55, 7.84, 8.19]),
(IEA37SimpleBastankhahGaussianDeficit(),
[3.32, 4.86, 7.0, 8.1, 7.8, 7.23, 6.86, 6.9, 7.3, 7.82, 8.11, 8.04, 7.87, 7.79, 7.85, 8.04, 8.28]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00014617Zi=00399Zeta0=0.00E+0/'),
[6.91, 7.87, 8.77, 8.88, 8.55, 7.88, 7.24, 7.32, 8.01, 8.62, 8.72, 8.42, 8.05, 7.85, 8., 8.37, 8.69]),
[2.39, 5.01, 7.74, 8.34, 7.95, 7.58, 7.29, 7.32, 7.61, 7.92, 8.11, 8.09, 7.95, 7.83, 7.92, 8.1, 8.3]),
(GCLLocalDeficit(),
[3.05, 5.24, 7.61, 8.36, 8.08, 7.81, 7.61, 7.63, 7.82, 8.01, 8.11, 8.07, 7.94, 7.83, 7.92, 8.1, 8.3]),
(ZongGaussianDeficit(),
[6.34, 7.08, 8.09, 8.36, 7.5, 6.2, 5.23, 5.34, 6.43, 7.64, 8.08, 7.75, 7.36, 7.19, 7.32, 7.69, 8.14]),
(NiayifarGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.97, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.56, 7.84, 8.19]),
def test_deficitModel_wake_map(deficitModel, ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()

Mads M. Pedersen
committed
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, superpositionModel=SquaredSum(),
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
flow_map = wf_model(x, y, wd=0, ws=9).flow_map(HorizontalGrid(x_j, y_j))
X, Y = flow_map.X, flow_map.Y
Z = flow_map.WS_eff_xylk[:, :, 0, 0]

Mads M. Pedersen
committed
mean_ref = [3.2, 4.9, 8., 8.2, 7.9, 7.4, 7., 7., 7.4, 7.9, 8.1, 8.1, 8., 7.8, 7.9, 8.1, 8.4]
if 0:
flow_map.plot_wake_map()
plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '.-')
windTurbines.plot(x, y)

Mads M. Pedersen
committed
plt.figure()
plt.plot(Z[49, 100:133:2])
plt.plot(ref, label='ref')
plt.plot(mean_ref, label='Mean ref')
plt.legend()

Mads M. Pedersen
committed
npt.assert_array_almost_equal(ref, Z[49, 100:133:2], 2)

Mads M. Pedersen
committed
# check that ref is reasonable
npt.assert_allclose(ref[2:], mean_ref[2:], atol=2.6)
@pytest.mark.parametrize(

Mads M. Pedersen
committed
'deficitModel,wake_radius_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(), [100., 75., 150., 100., 100.]),
(NOJLocalDeficit(), [71., 46., 92., 71., 61.5]),
(BastankhahGaussianDeficit(),
[83.336286, 57.895893, 115.791786, 75.266662, 83.336286]),
(IEA37SimpleBastankhahGaussianDeficit(),
[83.336286, 57.895893, 115.791786, 75.266662, 83.336286]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00014617Zi=00399Zeta0=0.00E+0/'),
[100, 50, 100, 100, 100]),
[156.949964, 97.763333, 195.526667, 113.225695, 111.340236]),
(GCLLocalDeficit(),
[156.949964, 97.763333, 195.526667, 113.225695, 111.340236]),
(ZongGaussianDeficit(), [91.15734, 66.228381, 132.456762, 94.90156, 79.198215]),
(NiayifarGaussianDeficit(), [92.880786, 67.440393, 134.880786, 84.811162, 73.880786]),
])

Mads M. Pedersen
committed
def test_wake_radius(deficitModel, wake_radius_ref):
mean_ref = [105, 68, 135, 93, 123]
# check that ref is reasonable
npt.assert_allclose(wake_radius_ref, mean_ref, rtol=.5)
npt.assert_array_almost_equal(deficitModel.wake_radius(
D_src_il=np.reshape([100, 50, 100, 100, 100], (5, 1)),
dw_ijlk=np.reshape([500, 500, 1000, 500, 500], (5, 1, 1, 1)),
ct_ilk=np.reshape([.8, .8, .8, .4, .8], (5, 1, 1)),

Mads M. Pedersen
committed
TI_ilk=np.reshape([.1, .1, .1, .1, .05], (5, 1, 1)),
TI_eff_ilk=np.reshape([.1, .1, .1, .1, .05], (5, 1, 1)))[:, 0, 0, 0],
wake_radius_ref)
# Check that it works when called from WindFarmModel
site = IEA37Site(16)
windTurbines = IEA37_WindTurbines()
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, turbulenceModel=GCLTurbulence())
wfm(x=[0, 500], y=[0, 0], wd=[30], ws=[10])
if 0:
sim_res = wfm([0], [0], wd=[270], ws=10)
sim_res.flow_map(HorizontalGrid(x=np.arange(-100, 1500, 10))).WS_eff.plot()
x = np.arange(0, 1500, 10)
wr = deficitModel.wake_radius(
D_src_il=np.reshape([130], (1, 1)),
dw_ijlk=np.reshape(x, (1, len(x), 1, 1)),
ct_ilk=sim_res.CT.values,
TI_ilk=np.reshape(sim_res.TI.values, (1, 1, 1)),
TI_eff_ilk=sim_res.TI_eff.values)[0, :, 0, 0]
plt.title(deficitModel.__class__.__name__)
plt.plot(x, wr)
plt.plot(x, -wr)
plt.axis('equal')
plt.show()
def test_wake_radius_not_implemented():
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=SelfSimilarityDeficit(),
with pytest.raises(NotImplementedError, match="wake_radius not implemented for SelfSimilarityDeficit"):
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
@pytest.mark.parametrize(
'deficitModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(BastankhahGaussianDeficit(), (338848.4232271521,
[8618.62236, 7615.23967, 10959.13371, 13390.20853, 19094.25425,
24176.7654, 37790.11624, 38710.80165, 21718.92835, 12368.03698,
14319.69596, 30618.7735, 63588.46932, 16969.44073, 11749.49412,
7160.44246])),
(ZongGaussianDeficit(),
(336631.72472958744, [8459.16014, 7605.17823, 11029.97614, 13381.64219, 18550.00538,
24161.2984, 38034.40047, 38659.656, 21317.08356, 12322.54712,
14244.59289, 30532.23574, 62590.49112, 16921.48005, 11687.87109,
7134.10623])),
(NiayifarGaussianDeficit(),
(342508.81971496233, [8689.19059, 7822.04451, 11019.98716, 13481.81082, 19141.69434,
24342.15843, 37999.95572, 39762.05958, 21896.76029, 12703.77497,
14218.12659, 30742.83051, 64629.25874, 17038.19522, 11666.15515,
7354.81709])),
])
def test_IEA37_ex16_convection(deficitModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel,
superpositionModel=WeightedSum(), turbulenceModel=GCLTurbulence())
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.11)
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.15)
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)
@pytest.mark.parametrize(
'deficitModel,ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(BastankhahGaussianDeficit(),
[3.25, 5.43, 7.66, 8.15, 7.48, 6.45, 5.69, 5.7, 6.38, 7.15, 7.54, 7.49, 7.27, 7.16, 7.28, 7.61, 8.04]),
(ZongGaussianDeficit(),
[6.22, 6.97, 7.91, 8.16, 7.5, 6.3, 5.35, 5.4, 6.32, 7.29, 7.67, 7.51, 7.17, 7., 7.14, 7.55, 8.05]),
(NiayifarGaussianDeficit(),
[3.29, 5.45, 7.67, 8.15, 7.49, 6.47, 5.72, 5.72, 6.4, 7.17, 7.55, 7.5, 7.29, 7.17, 7.29, 7.62, 8.05]),
])
def test_deficitModel_wake_map_convection(deficitModel, ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, superpositionModel=WeightedSum(),
turbulenceModel=GCLTurbulence())
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
flow_map = wf_model(x, y, wd=0, ws=9).flow_map(HorizontalGrid(x_j, y_j))
X, Y = flow_map.X, flow_map.Y
Z = flow_map.WS_eff_xylk[:, :, 0, 0]
mean_ref = [3.2, 4.9, 8., 8.2, 7.9, 7.4, 7., 7., 7.4, 7.9, 8.1, 8.1, 8., 7.8, 7.9, 8.1, 8.4]
if 0:
flow_map.plot_wake_map()
plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '.-')
windTurbines.plot(x, y)
plt.figure()
plt.plot(Z[49, 100:133:2], label='Actual')
plt.plot(ref, label='Reference')
plt.plot(mean_ref, label='Mean ref')
plt.legend()
plt.show()
# check that ref is reasonable
npt.assert_allclose(ref[2:], mean_ref[2:], atol=2.6)
npt.assert_array_almost_equal(Z[49, 100:133:2], ref, 2)
@pytest.mark.parametrize(
'windFarmModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJ,
(367205.0846866496, [9833.86287, 8416.99088, 10820.37673, 13976.26422, 22169.66036,
25234.9215, 37311.64388, 42786.37028, 24781.33444, 13539.82115,
14285.22744, 31751.29488, 75140.15677, 17597.10319, 11721.21226,
7838.84383])),
(NOJLocal,
(335151.6404628441, [8355.71335, 7605.92379, 10654.172, 13047.6971, 19181.46408,
23558.34198, 36738.52415, 38663.44595, 21056.39764, 12042.79324,
13813.46269, 30999.42279, 63947.61202, 17180.40299, 11334.12323,
6972.14345])),
(BastankhahGaussian, (355971.9717035484,
[9143.74048, 8156.71681, 11311.92915, 13955.06316, 19807.65346,
25196.64182, 39006.65223, 41463.31044, 23042.22602, 12978.30551,
14899.26913, 32320.21637, 67039.04091, 17912.40907, 12225.04134,
7513.75582])),
(IEA37SimpleBastankhahGaussian, read_iea37_windfarm(iea37_path + 'iea37-ex16.yaml')[2]),
(lambda *args, **kwargs: Fuga(tfp + 'fuga/2MW/Z0=0.00014617Zi=00399Zeta0=0.00E+0/', *args, **kwargs),
(398938.8941139709, [9632.92248, 9733.98766, 12462.98413, 15332.30502, 22199.91899,
27683.32851, 42975.80734, 49481.10395, 24274.96466, 15416.63681,
16681.20957, 35508.27583, 75263.59612, 19679.2854, 13687.14632,
8925.42131])),
(GCL, (370863.6246093183,
[9385.75387, 8768.52105, 11450.13309, 14262.42186, 21178.74926,
25751.59502, 39483.21753, 44573.31533, 23652.09976, 13924.58752,
15106.11692, 32840.02909, 71830.22035, 18200.49805, 12394.7626,
8061.6033])),
(GCLLocal, (381187.36105425097,
[9678.85358, 9003.65526, 11775.06899, 14632.42259, 21915.85495,
26419.65189, 40603.68618, 45768.58091, 24390.71103, 14567.43106,
15197.82861, 32985.67922, 75062.92788, 18281.21981, 12470.01322,
8433.77587])),
(ZongGaussian,
(354263.1062694012, [8960.58672, 8095.48341, 11328.51572, 13924.50408, 19938.78428,
25141.4657, 39063.84731, 41152.04065, 22580.67854, 12944.55424,
14778.95385, 32294.41749, 66540.62665, 17898.1109, 12126.32111,
7494.21561])),
(NiayifarGaussian,
(362228.4003016239, [9210.01349, 8330.06642, 11392.04851, 14082.13366, 20643.45247,
25426.07466, 39282.9259, 42344.50431, 23209.23399, 13390.08421,
14807.66824, 32535.89096, 69640.3283, 18031.93957, 12149.88163,
7752.15401])),
])
def test_IEA37_ex16_windFarmModel(windFarmModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = windFarmModel(site, windTurbines, turbulenceModel=GCLTurbulence())
wf_model.superpositionModel = SquaredSum()
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.11)
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.15)
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)
def test_own_deficit_is_zero():
for deficitModel in get_models(DeficitModel):
site = Hornsrev1Site()
windTurbines = IEA37_WindTurbines()
wf_model = All2AllIterative(site, windTurbines, wake_deficitModel=deficitModel(),
turbulenceModel=STF2017TurbulenceModel())
sim_res = wf_model([0], [0])
npt.assert_array_equal(sim_res.WS_eff, sim_res.WS.broadcast_like(sim_res.WS_eff))
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
@pytest.mark.parametrize('upstream_only,ref', [(False, [[9, 9, 9], # -1 upstream
[7, 7, 7]]), # - (1+2) downstream
(True, [[9, 9, 9], # -1 upstream
[8, 8, 8]])]) # -2 downstream
def test_wake_blockage_split(upstream_only, ref):
class MyWakeModel(WakeDeficitModel):
args4deficit = []
def calc_deficit(self, dw_ijlk, **kwargs):
return np.ones_like(dw_ijlk) * 2
class MyBlockageModel(BlockageDeficitModel):
args4deficit = []
def calc_deficit(self, dw_ijlk, **kwargs):
return np.ones_like(dw_ijlk)
site = Hornsrev1Site()
windTurbines = IEA37_WindTurbines()
wf_model = All2AllIterative(site, windTurbines, wake_deficitModel=MyWakeModel(),
blockage_deficitModel=MyBlockageModel(upstream_only=upstream_only))
sim_res = wf_model([0], [0], ws=10, wd=270)
fm = sim_res.flow_map(XYGrid(x=[-100, 100], y=[-100, 0, 100]))
if 0:
sim_res.flow_map().plot_wake_map()
print(fm.WS_eff.values.squeeze().T)
plt.show()
npt.assert_array_equal(fm.WS_eff.values.squeeze().T, ref)