-
Mads M. Pedersen authoredMads M. Pedersen authored
engineering_models.py 45.67 KiB
from abc import abstractmethod
from numpy import newaxis as na
from py_wake import np
from py_wake.superposition_models import SuperpositionModel, LinearSum, WeightedSum
from py_wake.wind_farm_models.wind_farm_model import WindFarmModel
from py_wake.deflection_models.deflection_model import DeflectionModel
from py_wake.utils.gradients import cabs
from py_wake.rotor_avg_models.rotor_avg_model import RotorAvgModel, RotorCenter
from py_wake.turbulence_models.turbulence_model import TurbulenceModel
from py_wake.deficit_models.deficit_model import ConvectionDeficitModel, BlockageDeficitModel, WakeDeficitModel
from tqdm import tqdm
from py_wake.wind_turbines._wind_turbines import WindTurbines
from py_wake.utils.model_utils import check_model
from py_wake.utils.functions import mean_deg, arg2ilk
from py_wake.utils.gradients import hypot
import warnings
class EngineeringWindFarmModel(WindFarmModel):
"""
Base class for engineering wake models
General suffixes:
- i: turbines ordered by id
- j: downstream points/turbines
- k: wind speeds
- l: wind directions
Arguments available for calc_deficit (specifiy in args4deficit):
- WS_ilk: Local wind speed without wake effects
- TI_ilk: Local turbulence intensity without wake effects
- TI_std_ilk: Standard deviation of local turbulence intensity
- WS_eff_ilk: Local wind speed with wake effects
- TI_eff_ilk: Local turbulence intensity with wake effects
- D_src_il: Diameter of source turbine
- D_dst_ijl: Diameter of destination turbine
- dw_ijlk: Downwind distance from turbine i to point/turbine j
- hcw_ijlk: Horizontal cross wind distance from turbine i to point/turbine j
- dh_ijl: vertical distance from turbine i to point/turbine j
- cw_ijlk: Cross wind(horizontal and vertical) distance from turbine i to point/turbine j
- ct_ilk: Thrust coefficient
"""
default_grid_resolution = 500
def __init__(self, site, windTurbines: WindTurbines, wake_deficitModel, superpositionModel, rotorAvgModel=None,
blockage_deficitModel=None, deflectionModel=None, turbulenceModel=None):
WindFarmModel.__init__(self, site, windTurbines)
for model, cls, name in [(wake_deficitModel, WakeDeficitModel, 'wake_deficitModel'),
(superpositionModel, SuperpositionModel, 'superpositionModel'),
(blockage_deficitModel, BlockageDeficitModel, 'blockage_deficitModel'),
(deflectionModel, DeflectionModel, 'deflectionModel'),
(turbulenceModel, TurbulenceModel, 'turbulenceModel')]:
check_model(model, cls, name)
if model is not None:
setattr(model, 'windFarmModel', self)
setattr(self, name, model)
if isinstance(superpositionModel, WeightedSum):
assert isinstance(wake_deficitModel, ConvectionDeficitModel)
assert rotorAvgModel is None or isinstance(rotorAvgModel, RotorCenter), \
"WeightedSum only works with RotorCenter"
# TI_eff requires a turbulence model
assert 'TI_eff_ilk' not in wake_deficitModel.args4deficit or turbulenceModel
self.wake_deficitModel = wake_deficitModel
if rotorAvgModel is not None:
warnings.warn("""The rotorAvgModel-argument of WindFarmModel is ambiguous and therefore deprecated.
Set the rotorAvgModel of the wake_deficitModel, the blockage_deficitModel and/or turbulenceModel instead.
Until removed, the rotorAvgModel of WindFarmModel will apply the rotorAvgModel to the wake_deficitModel only
if a rotorAvgModel has not already been specified for the wake_deficitModel""",
DeprecationWarning, stacklevel=2)
check_model(rotorAvgModel, RotorAvgModel, 'rotorAvgModel')
self.wake_deficitModel._rotorAvgModel = self.wake_deficitModel._rotorAvgModel or rotorAvgModel
self.superpositionModel = superpositionModel
self.blockage_deficitModel = blockage_deficitModel
self.deflectionModel = deflectionModel
self.turbulenceModel = turbulenceModel
# wake expansion continuation (wake-width scale factor) see
self.wec = 1
# Thomas, J. J. and Ning, A., "A Method for Reducing Multi-Modality in the Wind Farm Layout Optimization Problem,"
# Journal of Physics: Conference Series, Vol. 1037, The Science of Making
# Torque from Wind, Milano, Italy, jun 2018, p. 10.
self.deficit_initalized = False
self.args4deficit = self.wake_deficitModel.args4deficit
self.args4deficit = set(self.args4deficit) | {'yaw_ilk'}
if self.blockage_deficitModel:
self.args4deficit = set(self.args4deficit) | set(self.blockage_deficitModel.args4deficit)
self.args4all = set(self.args4deficit)
if self.turbulenceModel:
self.args4all |= set(self.turbulenceModel.args4model)
if self.deflectionModel:
self.args4all |= set(self.deflectionModel.args4deflection)
def __str__(self):
def name(o):
return o.__class__.__name__
models = [self.__class__.__bases__[0].__name__, "%s-wake" % name(self.wake_deficitModel)]
if self.blockage_deficitModel:
models.append("%s-blockage" % name(self.blockage_deficitModel))
models.append("%s-superposition" % (name(self.superpositionModel)))
if self.deflectionModel:
models.append("%s-deflection" % name(self.deflectionModel))
if self.turbulenceModel:
models.append("%s-turbulence" % name(self.turbulenceModel))
return "%s(%s)" % (name(self), ", ".join(models))
def _init_deficit(self, **kwargs):
"""Calculate layout dependent wake (and blockage) deficit terms"""
self.wake_deficitModel.calc_layout_terms(**kwargs)
self.wake_deficitModel.deficit_initalized = True
if self.blockage_deficitModel:
if self.blockage_deficitModel != self.wake_deficitModel:
self.blockage_deficitModel.calc_layout_terms(**kwargs)
self.blockage_deficitModel.deficit_initalized = True
def _reset_deficit(self):
self.wake_deficitModel.deficit_initalized = False
if self.blockage_deficitModel:
self.blockage_deficitModel.deficit_initalized = False
def _add_blockage(self, deficit, dw_ijlk, **kwargs):
# the split line between wake and blockage is set slightly upstream to handle
# numerical inaccuracy in the trigonometric functions that calculates dw_ijlk
rotor_pos = -1e-10
if self.blockage_deficitModel is None:
deficit *= (dw_ijlk > rotor_pos)
blockage = np.zeros_like(deficit)
elif (self.blockage_deficitModel != self.wake_deficitModel):
blockage = self.blockage_deficitModel.calc_blockage_deficit(dw_ijlk=dw_ijlk, **kwargs)
deficit *= (dw_ijlk > rotor_pos)
else:
# Same model for both wake and blockage
# keep blockage in deficit and set blockage to zero
blockage = np.zeros_like(deficit)
return deficit, blockage
def _calc_deficit(self, dw_ijlk, **kwargs):
"""Calculate wake (and blockage) deficit"""
deficit = self.wake_deficitModel(dw_ijlk=dw_ijlk, **kwargs)
deficit, blockage = self._add_blockage(deficit, dw_ijlk, **kwargs)
return deficit, blockage
def _calc_deficit_convection(self, dw_ijlk, **kwargs):
"""Calculate wake convection deficit (and blockage)"""
deficit, uc, sigma_sqr = self.wake_deficitModel.calc_deficit_convection(dw_ijlk=dw_ijlk, **kwargs)
deficit, blockage = self._add_blockage(deficit, dw_ijlk, **kwargs)
return deficit, uc, sigma_sqr, blockage
def _calc_wt_interaction_args(self, kwargs):
"""Used for parallel execution"""
return self.calc_wt_interaction(**kwargs)
def calc_wt_interaction(self, x_i, y_i, h_i=None, type_i=0, wd=None, ws=None, time=False,
yaw_ilk=None, tilt_ilk=None,
n_cpu=1, wd_chunks=None, ws_chunks=1,
**kwargs):
"""See WindFarmModel.calc_wt_interaction and additional parameters below
Parameters
----------
n_cpu : int or None, optional
Number of CPUs to be used for execution.
If 1 (default), the execution is not parallized
If None, the available number of CPUs are used
wd_chunks : int or None, optional
If n_cpu>1, the wind directions are divided into <wd_chunks> chunks and executed in parallel.
If wd_chunks is None, wd_chunks is set to the available number of CPUs
ws_chunks : int or None, optional
If n_cpu>1, the wind speeds are divided into <ws_chunks> chunks and executed in parallel.
If ws_chunks is None, ws_chunks is set to 1
"""
h_i, D_i = self.windTurbines.get_defaults(len(x_i), type_i, h_i)
x_i, y_i, type_i = [np.asarray(v) for v in [x_i, y_i, type_i]]
wd, ws = self.site.get_defaults(wd, ws)
# Find local wind speed, wind direction, turbulence intensity and probability
lw = self.site.local_wind(x_i=x_i, y_i=y_i, h_i=h_i, wd=wd, ws=ws, time=time)
I, L, K, = len(x_i), len(wd), (1, len(ws))[time is False]
wt_kwargs = kwargs
ri, oi = self.windTurbines.function_inputs
unused_inputs = set(wt_kwargs) - set(ri) - set(oi) - {'WS', 'WD', 'TI'}
if unused_inputs:
raise TypeError("""got unexpected keyword argument(s): '%s'
required arguments: %s
optional arguments: %s""" % ("', '".join(unused_inputs), ['ws'] + ri, oi))
wt_kwargs = {k: arg2ilk(k, v, I, L, K) for k, v in wt_kwargs.items()}
if n_cpu != 1 or wd_chunks or ws_chunks > 1:
# parallel execution
map_func, arg_lst, wd_chunks, ws_chunks = self._multiprocessing_chunks(
wd=wd, ws=ws, time=time, n_cpu=n_cpu, wd_chunks=wd_chunks, ws_chunks=ws_chunks,
x_i=x_i, y_i=y_i, h_i=h_i, type_i=type_i, yaw_ilk=yaw_ilk, tilt_ilk=tilt_ilk, **kwargs)
WS_eff_ilk, TI_eff_ilk, power_ilk, ct_ilk, _, wt_inputs = list(
zip(*map_func(self._calc_wt_interaction_args, arg_lst)))
def concatenate(v_ilk):
if all([v is None for v in v_ilk]):
return None
if time is False:
v_ilk = [np.broadcast_to(v, WS_eff.shape) for v, WS_eff in zip(v_ilk, WS_eff_ilk)]
return np.concatenate([np.concatenate(v_ilk[i::ws_chunks], axis=1)
for i in range(ws_chunks)], axis=2)
else:
v_ilk = [np.broadcast_to(v, WS_eff.shape) for v, WS_eff in zip(v_ilk, WS_eff_ilk)]
return np.concatenate(v_ilk, axis=1)
return ([concatenate(v) for v in [WS_eff_ilk, TI_eff_ilk, power_ilk, ct_ilk]] +
[lw, {k: concatenate([wt_i[k] for wt_i in wt_inputs]) for k in wt_inputs[0]}])
# Calculate down-wind and cross-wind distances
self._validate_input(x_i, y_i, h_i)
for k in ['WS', 'WD', 'TI']:
if k in kwargs:
lw.add_ilk(k + '_ilk', kwargs[k])
self.site.distance.setup(x_i, y_i, h_i)
def add_arg(name, optional):
if name in wt_kwargs: # custom WindFarmModel.__call__ arguments
return
elif name in {'yaw', 'tilt', 'type'}: # fixed WindFarmModel.__call__ arguments
wt_kwargs[name] = {'yaw': yaw_ilk, 'tilt': tilt_ilk, 'type': type_i}[name]
elif name + '_ilk' in lw:
wt_kwargs[name] = lw[name + '_ilk']
elif name in self.site.ds:
wt_kwargs[name] = self.site.interp(self.site.ds[name], lw)
elif name in ['TI_eff']:
if self.turbulenceModel:
wt_kwargs['TI_eff'] = None
elif optional is False:
raise KeyError("Argument, TI_eff, needed to calculate power and ct requires a TurbulenceModel")
elif name in ['dw_ijl', 'cw_ijl', 'hcw_ijl']:
pass
elif optional:
pass
else:
raise KeyError("Argument, %s, required to calculate power and ct not found" % name)
for opt, lst in zip([False, True], self.windTurbines.function_inputs):
for k in lst:
add_arg(k, opt)
if yaw_ilk is None:
yaw_ilk = np.zeros((I, L, K))
if tilt_ilk is None:
tilt_ilk = np.zeros((I, L, K))
kwargs = {'wd': lw.wd,
'WD_ilk': lw.WD_ilk,
'WS_ilk': lw.WS_ilk,
'TI_ilk': lw.TI_ilk,
'WS_eff_ilk': lw.WS_ilk + 0., # autograd-friendly copy
'TI_eff_ilk': lw.TI_ilk + 0.,
'x_i': x_i, 'y_i': y_i, 'h_i': h_i, 'D_i': D_i,
'yaw_ilk': yaw_ilk, 'tilt_ilk': tilt_ilk,
'I': I, 'L': L, 'K': K, **wt_kwargs}
WS_eff_ilk, TI_eff_ilk, ct_ilk = self._calc_wt_interaction(**kwargs)
if 'TI_eff' in wt_kwargs:
wt_kwargs['TI_eff'] = TI_eff_ilk
d_ijl_keys = ({k for l in self.windTurbines.function_inputs for k in l} &
{'dw_ijl', 'hcw_ijl', 'dh_ijl', 'cw_ijl'})
if d_ijl_keys:
d_ijl_dict = {k: lambda v=v: v for k, v in zip(['dw_ijl', 'hcw_ijl', 'dh_ijl'], self.site.distance(wd[na]))}
d_ijl_dict['cw_ijl'] = lambda d_ijl_dict=d_ijl_dict: np.sqrt(
d_ijl_dict['dw_ijl']**2 + d_ijl_dict['hcw_ijl']**2)
wt_kwargs.update({k: d_ijl_dict[k]() for k in d_ijl_keys})
wt_kwargs_keys = set(self.windTurbines.powerCtFunction.required_inputs +
self.windTurbines.powerCtFunction.optional_inputs)
power_ilk = self.windTurbines.power(WS_eff_ilk, **{k: v for k, v in wt_kwargs.items() if k in wt_kwargs_keys})
return WS_eff_ilk, TI_eff_ilk, power_ilk, ct_ilk, lw, wt_kwargs
@abstractmethod
def _calc_wt_interaction(self, **kwargs):
"""calculate WT interaction"""
def get_map_args(self, x_j, y_j, h_j, sim_res_data):
wt_d_i = self.windTurbines.diameter(sim_res_data.type)
wt_x_i, wt_y_i, wt_h_i, wd, ws = [sim_res_data[k].values for k in ['x', 'y', 'h', 'wd', 'ws']]
WD_il = sim_res_data.WD.ilk()
lw_j = self.site.local_wind(x_i=x_j, y_i=y_j, h_i=h_j, wd=wd, ws=ws)
I, J, L, K = [len(x) for x in [wt_x_i, x_j, wd, ws]]
self.site.distance.setup(wt_x_i, wt_y_i, wt_h_i, (x_j, y_j, h_j))
def get_ilk(k):
v = sim_res_data[k].ilk()
def wrap(l):
l_ = [l, slice(0, 1)][v.shape[1] == 1]
return v[:, l_]
return wrap
return {'WS_ilk': get_ilk('WS'),
'WS_eff_ilk': get_ilk('WS_eff'),
'TI_ilk': get_ilk('TI'),
'TI_eff_ilk': get_ilk('TI_eff'),
'yaw_ilk': get_ilk('yaw'),
'tilt_ilk': get_ilk('tilt'),
'D_src_il': lambda l: wt_d_i[:, na],
'D_dst_ijl': lambda l: np.zeros((I, J, 1)),
'h_il': lambda l: wt_h_i[:, na],
'ct_ilk': get_ilk('CT'),
'IJLK': lambda l=wd: (I, J, len(np.atleast_1d(l)), K)}, lw_j, wd, WD_il
def _get_flow_l(self, arg_funcs, l, lw_j, wd, WD_il, I, J, L, K):
dw_ijl, hcw_ijl, dh_ijl = self.site.distance(wd_l=wd[l], WD_il=WD_il[:, l, :].mean(2))
WS_ilk, TI_ilk = lw_j.WS_ilk, lw_j.TI_ilk
if self.wec != 1:
hcw_ijl = hcw_ijl / self.wec
model_kwargs = {k: arg_funcs[k](l) for k in self.args4all if k in arg_funcs}
if self.deflectionModel:
dw_ijlk, hcw_ijlk, dh_ijlk = self.deflectionModel.calc_deflection(
dw_ijl=dw_ijl, hcw_ijl=hcw_ijl, dh_ijl=dh_ijl,
**model_kwargs)
else:
dw_ijlk, hcw_ijlk, dh_ijlk = dw_ijl[..., na], hcw_ijl[..., na], dh_ijl[..., na]
model_kwargs.update({'dw_ijlk': dw_ijlk, 'hcw_ijlk': hcw_ijlk, 'dh_ijlk': dh_ijlk})
if 'cw_ijlk' in self.args4all:
model_kwargs['cw_ijlk'] = hypot(dh_ijlk, hcw_ijlk)
if 'wake_radius_ijlk' in self.args4all:
model_kwargs['wake_radius_ijlk'] = self.wake_deficitModel.wake_radius(**model_kwargs)
if 'wake_radius_ijl' in self.args4all:
model_kwargs['wake_radius_ijl'] = self.wake_deficitModel.wake_radius(**model_kwargs)[..., 0]
if isinstance(self.superpositionModel, WeightedSum):
deficit_ijlk, uc_ijlk, sigma_sqr_ijlk, blockage_ijlk = self._calc_deficit_convection(**model_kwargs)
else:
deficit_ijlk, blockage_ijlk = self._calc_deficit(**model_kwargs)
if self.turbulenceModel:
add_turb_ijlk = self.turbulenceModel.calc_added_turbulence(**model_kwargs)
l_ = [l, slice(0, 1)][WS_ilk.shape[1] == 1]
if isinstance(self.superpositionModel, WeightedSum):
cw_ijlk = hypot(dh_ijl[..., na], hcw_ijlk)
WS_eff_jlk = WS_ilk[:, l_] - self.superpositionModel(WS_ilk[:, l_], deficit_ijlk, uc_ijlk,
sigma_sqr_ijlk, cw_ijlk, hcw_ijlk, dh_ijlk)
if self.blockage_deficitModel:
blockage_superpositionModel = self.blockage_deficitModel.superpositionModel or LinearSum()
WS_eff_jlk -= blockage_superpositionModel(blockage_ijlk)
else:
WS_eff_jlk = WS_ilk[:, l_] - self.superpositionModel(deficit_ijlk)
if self.blockage_deficitModel:
blockage_superpositionModel = self.blockage_deficitModel.superpositionModel or self.superpositionModel
WS_eff_jlk -= blockage_superpositionModel(blockage_ijlk)
if self.turbulenceModel:
l_ = [l, slice(0, 1)][TI_ilk.shape[1] == 1]
TI_eff_jlk = self.turbulenceModel.calc_effective_TI(TI_ilk[:, l_], add_turb_ijlk)
else:
TI_eff_jlk = None
return WS_eff_jlk, TI_eff_jlk
def _aep_map(self, x_j, y_j, h_j, sim_res_data):
arg_funcs, lw_j, wd, WD_il = self.get_map_args(x_j, y_j, h_j, sim_res_data)
P = lw_j.P_ilk
I, J, L, K = arg_funcs['IJLK']()
size_gb = I * J * L * K * 8 / 1024**3
wd_chunks = np.maximum(int(size_gb // 1), 1)
wd_i = np.round(np.linspace(0, L, wd_chunks + 1)).astype(int)
wd_slices = [slice(i0, i1) for i0, i1 in zip(wd_i[:-1], wd_i[1:])]
aep_j = np.zeros(len(x_j))
for l_slice in tqdm(wd_slices, disable=len(wd_slices) <= 1 or not self.verbose,
desc='Calculate flow map', unit='wd'):
ws_eff_jlk = self._get_flow_l(arg_funcs, l_slice, lw_j, wd, WD_il, I, J, L, K)[0]
# p_bin = self.windTurbines.power(np.arange(0, 50, .01))
# power_jlk = p_bin[(ws_eff_jlk * 100).astype(int)]
power_jlk = self.windTurbines.power(ws_eff_jlk)
aep_j += (power_jlk * P[:, l_slice]).sum((1, 2))
return aep_j * 365 * 24 * 1e-9
def _flow_map(self, x_j, y_j, h_j, sim_res_data):
"""call this function via SimulationResult.flow_map"""
arg_funcs, lw_j, wd, WD_il = self.get_map_args(x_j, y_j, h_j, sim_res_data)
I, J, L, K = arg_funcs['IJLK']()
if I == 0:
return (lw_j, np.broadcast_to(lw_j.WS_ilk, (len(x_j), L, K)).astype(float),
np.broadcast_to(lw_j.TI_ilk, (len(x_j), L, K)).astype(float))
l_iter = tqdm(range(L), disable=L <= 1 or not self.verbose, desc='Calculate flow map', unit='wd')
WS_eff_jlk, TI_eff_jlk = zip(*[self._get_flow_l(arg_funcs, slice(l, l + 1), lw_j, wd, WD_il, I, J, 1, K)
for l in l_iter])
WS_eff_jlk = np.concatenate(WS_eff_jlk, 1)
if self.turbulenceModel:
TI_eff_jlk = np.concatenate(TI_eff_jlk, 1)
else:
TI_eff_jlk = np.broadcast_to(lw_j.TI_ilk, (len(x_j), L, K)) + 0.
return lw_j, WS_eff_jlk, TI_eff_jlk
def _validate_input(self, x_i, y_i, h_i):
i1, i2 = np.where((cabs(
x_i[:, na] - x_i[na]) + cabs(y_i[:, na] - y_i[na]) + cabs(h_i[:, na] - h_i[na]) + np.eye(len(x_i))) == 0)
if len(i1):
msg = "\n".join(["Turbines %d and %d are at the same position" % (i1[i], i2[i]) for i in range(len(i1))])
raise ValueError(msg)
class PropagateDownwind(EngineeringWindFarmModel):
"""Downstream wake deficits calculated and propagated in downstream direction.
Very fast, but ignoring blockage effects
"""
def __init__(self, site, windTurbines, wake_deficitModel,
superpositionModel=LinearSum(),
deflectionModel=None, turbulenceModel=None, rotorAvgModel=None):
"""Initialize flow model
Parameters
----------
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
wake_deficitModel : DeficitModel
Model describing the wake(downstream) deficit
rotorAvgModel : RotorAvgModel, optional
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
if None, default, the wind speed at the rotor center is used
superpositionModel : SuperpositionModel
Model defining how deficits sum up
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
"""
EngineeringWindFarmModel.__init__(self, site, windTurbines, wake_deficitModel, superpositionModel, rotorAvgModel,
blockage_deficitModel=None, deflectionModel=deflectionModel,
turbulenceModel=turbulenceModel)
def _calc_wt_interaction(self, wd, WD_ilk, WS_ilk, TI_ilk,
WS_eff_ilk, TI_eff_ilk,
x_i, y_i, h_i, D_i, yaw_ilk, tilt_ilk,
I, L, K, **kwargs):
"""
Additional suffixes:
- m: turbines and wind directions (il.flatten())
- n: from_turbines, to_turbines and wind directions (iil.flatten())
"""
deficit_nk = []
uc_nk = []
sigma_sqr_nk = []
cw_nk = []
hcw_nk = []
dh_nk = []
def ilk2mk(x_ilk):
dtype = (float, np.complex128)[np.iscomplexobj(x_ilk)]
return np.broadcast_to(np.asarray(x_ilk).astype(dtype), (I, L, K)).reshape((I * L, K))
TI_mk = ilk2mk(TI_ilk)
WS_mk = ilk2mk(WS_ilk)
WS_eff_mk = []
TI_eff_mk = []
yaw_mk = ilk2mk(yaw_ilk)
tilt_mk = ilk2mk(tilt_ilk)
ct_jlk = []
if self.turbulenceModel:
add_turb_nk = []
i_wd_l = np.arange(L).astype(int)
wd = mean_deg(WD_ilk, (0, 2))
dw_order_indices_dl = self.site.distance.dw_order_indices(wd)
# Iterate over turbines in down wind order
for j in tqdm(range(I), disable=I <= 1 or not self.verbose, desc="Calculate flow interaction", unit="wt"):
i_wt_l = dw_order_indices_dl[:, j]
# current wt (j'th most upstream wts for all wdirs)
m = i_wt_l * L + i_wd_l
# Calculate effectiv wind speed at current turbines(all wind directions and wind speeds) and
# look up power and thrust coefficient
if j == 0: # Most upstream turbines (no wake)
WS_eff_lk = WS_mk[m]
WS_eff_mk.append(WS_eff_lk)
if self.turbulenceModel:
TI_eff_lk = TI_mk[m]
TI_eff_mk.append(TI_eff_lk)
else: # 2..n most upstream turbines (wake)
if isinstance(self.superpositionModel, WeightedSum):
deficit2WT = np.array([d_nk2[i] for d_nk2, i in zip(deficit_nk, range(j)[::-1])])
uc2WT = np.array([d_nk2[i] for d_nk2, i in zip(uc_nk, range(j)[::-1])])
sigmasqr2WT = np.array([d_nk2[i] for d_nk2, i in zip(sigma_sqr_nk, range(j)[::-1])])
cw2WT = np.array([d_nk2[i] for d_nk2, i in zip(cw_nk, range(j)[::-1])])
hcw2WT = np.array([d_nk2[i] for d_nk2, i in zip(hcw_nk, range(j)[::-1])])
dh2WT = np.array([d_nk2[i] for d_nk2, i in zip(dh_nk, range(j)[::-1])])
WS_eff_lk = WS_mk[m] - self.superpositionModel(WS_mk[m],
deficit2WT, uc2WT, sigmasqr2WT, cw2WT, hcw2WT, dh2WT)
else:
deficit2WT = np.array([d_nk2[i] for d_nk2, i in zip(deficit_nk, range(j)[::-1])])
WS_eff_lk = WS_mk[m] - self.superpositionModel(deficit2WT)
WS_eff_mk.append(WS_eff_lk)
if self.turbulenceModel:
add_turb2WT = np.array([d_nk2[i] for d_nk2, i in zip(add_turb_nk, range(j)[::-1])])
TI_eff_lk = self.turbulenceModel.calc_effective_TI(TI_mk[m], add_turb2WT)
TI_eff_mk.append(TI_eff_lk)
# Calculate Power/CT
def mask(k, v):
if v is None or isinstance(v, (int, float)) or len(np.shape(v)) == 0:
return v
if len(np.squeeze(v).shape) == 0:
return np.squeeze(v)
v = np.asarray(v)
if v.shape[:2] == (I, L):
return v[i_wt_l, i_wd_l]
elif v.shape[0] == I:
return v[i_wt_l].flatten()
else:
assert v.shape[1] == L
return v[0, i_wd_l]
keys = self.windTurbines.powerCtFunction.required_inputs + self.windTurbines.powerCtFunction.optional_inputs
_kwargs = {k: mask(k, v) for k, v in kwargs.items() if k in keys}
if 'TI_eff' in _kwargs:
_kwargs['TI_eff'] = TI_eff_mk[-1]
ct_lk = self.windTurbines.ct(WS_eff_lk, **_kwargs)
ct_jlk.append(ct_lk)
if j < I - 1:
i_dw = dw_order_indices_dl[:, j + 1:]
# Calculate required args4deficit parameters
arg_funcs = {'WS_ilk': lambda: WS_mk[m][na],
'WS_jlk': lambda: np.moveaxis([WS_ilk[(slice(0, 1), j)[WS_ilk.shape[0] > 1],
(0, l)[WS_ilk.shape[1] > 1]]
for j, l in zip(i_dw, i_wd_l)], 0, 1),
'WS_eff_ilk': lambda: WS_eff_mk[-1][na],
'TI_ilk': lambda: TI_mk[m][na],
'TI_eff_ilk': lambda: TI_eff_mk[-1][na],
'D_src_il': lambda: D_i[i_wt_l][na],
'yaw_ilk': lambda: yaw_mk[m][na],
'tilt_ilk': lambda: tilt_mk[m][na],
'D_dst_ijl': lambda: D_i[dw_order_indices_dl[:, j + 1:]].T[na],
'h_il': lambda: h_i[i_wt_l][na],
'ct_ilk': lambda: ct_lk[na],
'IJLK': lambda: (1, i_dw.shape[1], L, K),
}
model_kwargs = {k: arg_funcs[k]() for k in self.args4all if k in arg_funcs}
dw_jl, hcw_jl, dh_jl = self.site.distance(wd_l=wd, WD_il=wd, src_idx=i_wt_l, dst_idx=i_dw.T)
if self.wec != 1:
hcw_jl = hcw_jl / self.wec
if self.deflectionModel:
dw_ijlk, hcw_ijlk, dh_ijlk = self.deflectionModel.calc_deflection(
dw_ijl=dw_jl[na], hcw_ijl=hcw_jl[na], dh_ijl=dh_jl[na], **model_kwargs)
else:
dw_ijlk, hcw_ijlk, dh_ijlk = [v[na, :, :, na] for v in [dw_jl, hcw_jl, dh_jl]]
model_kwargs.update({'dw_ijlk': dw_ijlk, 'hcw_ijlk': hcw_ijlk, 'dh_ijlk': dh_ijlk})
hcw_nk.append(hcw_ijlk[0])
dh_nk.append(dh_ijlk[0])
if 'cw_ijlk' in self.args4all:
# sqrt(a**2+b**2) as hypot does not support complex numbers
model_kwargs['cw_ijlk'] = np.sqrt(dh_ijlk**2 + hcw_ijlk**2)
cw_nk.append(model_kwargs['cw_ijlk'][0])
if 'wake_radius_ijl' in self.args4all:
model_kwargs['wake_radius_ijl'] = self.wake_deficitModel.wake_radius(**model_kwargs)[..., 0]
if 'wake_radius_ijlk' in self.args4all:
model_kwargs['wake_radius_ijlk'] = self.wake_deficitModel.wake_radius(**model_kwargs)
# Calculate deficit
if isinstance(self.superpositionModel, WeightedSum):
deficit, uc, sigma_sqr, blockage = self._calc_deficit_convection(**model_kwargs)
deficit += blockage
uc_nk.append(uc[0])
sigma_sqr_nk.append(sigma_sqr[0])
else:
deficit, _ = self._calc_deficit(**model_kwargs)
deficit_nk.append(deficit[0])
if self.turbulenceModel:
# Calculate added turbulence
add_turb_nk.append(self.turbulenceModel(**model_kwargs)[0])
WS_eff_jlk, ct_jlk = np.array(WS_eff_mk), np.array(ct_jlk)
dw_inv_indices = (np.argsort(dw_order_indices_dl, 1).T * L + np.arange(L).astype(int)[na]).flatten()
WS_eff_ilk = WS_eff_jlk.reshape((I * L, K))[dw_inv_indices].reshape((I, L, K))
ct_ilk = ct_jlk.reshape((I * L, K))[dw_inv_indices].reshape((I, L, K))
if self.turbulenceModel:
TI_eff_jlk = np.array(TI_eff_mk)
TI_eff_ilk = TI_eff_jlk.reshape((I * L, K))[dw_inv_indices].reshape((I, L, K))
return WS_eff_ilk, TI_eff_ilk, ct_ilk
class All2AllIterative(EngineeringWindFarmModel):
"""Wake and blockage deficits calculated from all wt to all points of interest (wt/map points).
The calculations are iteratively repeated until convergence (change of effective wind speed < convergence_tolerance)"""
def __init__(self, site, windTurbines, wake_deficitModel,
superpositionModel=LinearSum(),
blockage_deficitModel=None, deflectionModel=None, turbulenceModel=None,
convergence_tolerance=1e-6, initialize_with_PropagateDownwind=True, rotorAvgModel=None):
"""Initialize flow model
Parameters
----------
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
wake_deficitModel : DeficitModel
Model describing the wake(downstream) deficit
rotorAvgModel : RotorAvgModel, optional
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
if None, default, the wind speed at the rotor center is used
superpositionModel : SuperpositionModel
Model defining how deficits sum up
blockage_deficitModel : DeficitModel
Model describing the blockage(upstream) deficit
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
convergence_tolerance : float
maximum accepted change in WS_eff_ilk [m/s]
"""
EngineeringWindFarmModel.__init__(self, site, windTurbines, wake_deficitModel, superpositionModel, rotorAvgModel,
blockage_deficitModel=blockage_deficitModel, deflectionModel=deflectionModel,
turbulenceModel=turbulenceModel)
self.convergence_tolerance = convergence_tolerance
self.initialize_with_PropagateDownwind = initialize_with_PropagateDownwind
def _calc_wt_interaction(self, wd, WD_ilk, WS_ilk, TI_ilk,
WS_eff_ilk, TI_eff_ilk,
x_i, y_i, h_i, D_i, yaw_ilk, tilt_ilk,
I, L, K, **kwargs):
if any([np.iscomplexobj(v) for v in [x_i, y_i, h_i, D_i, yaw_ilk, tilt_ilk]]):
dtype = np.complex128
else:
dtype = float
WS_ILK = np.broadcast_to(WS_ilk, (I, L, K))
# calculate WS_eff without blockage as a first guess
if self.initialize_with_PropagateDownwind:
blockage_deficitModel = self.blockage_deficitModel
self.blockage_deficitModel = None
WS_eff_ilk = PropagateDownwind._calc_wt_interaction(
self, wd, WD_ilk, WS_ilk, TI_ilk, WS_eff_ilk, TI_eff_ilk,
x_i, y_i, h_i, D_i,
yaw_ilk, tilt_ilk, I, L, K, **kwargs)[0]
self.blockage_deficitModel = blockage_deficitModel
else:
WS_eff_ilk = WS_ILK
WS_eff_ilk = WS_eff_ilk.astype(dtype)
WS_eff_ilk_last = WS_eff_ilk + 0 # fast autograd-friendly copy
diff_lk = np.zeros((L, K))
diff_lk_last, diff_lk_lastlast = None, None
dw_iil, hcw_iil, dh_iil = self.site.distance(wd_l=wd, WD_il=mean_deg(WD_ilk, 2))
ct_ilk = self.windTurbines.ct(WS_ILK, **kwargs)
ct_ilk_idle = self.windTurbines.ct(0.1 * np.ones_like(WS_ILK), **kwargs)
unstable_lk = np.zeros((L, K), dtype=bool)
ioff = np.broadcast_to(ct_ilk, (I, L, K)) < -1 # index of off/idling turbines
D_src_il = D_i[:, na]
model_kwargs = {'WS_ilk': WS_ilk,
'WS_eff_ilk': WS_eff_ilk,
'TI_ilk': TI_ilk,
'TI_eff_ilk': TI_ilk,
'yaw_ilk': yaw_ilk,
'tilt_ilk': tilt_ilk,
'D_src_il': D_src_il,
'D_dst_ijl': D_src_il[na],
'dw_ijlk': dw_iil[..., na],
'hcw_ijlk': hcw_iil[..., na],
'cw_ijlk': np.sqrt(hcw_iil**2 + dh_iil**2)[..., na],
'dh_ijlk': dh_iil[..., na],
'h_il': h_i[:, na],
'IJLK': (I, I, L, K),
}
if 'wake_radius_ijl' in self.args4all:
model_kwargs['wake_radius_ijl'] = self.wake_deficitModel.wake_radius(**model_kwargs)[:, :, :, 0]
if not self.deflectionModel:
self._init_deficit(**model_kwargs)
# Iterate until convergence
for j in tqdm(range(I), disable=I <= 1 or not self.verbose,
desc="Calculate flow interaction", unit="Iteration"):
ct_ilk = self.windTurbines.ct(np.maximum(WS_eff_ilk, 0), **kwargs)
ioff |= (unstable_lk)[na] & (ct_ilk <= ct_ilk_idle)
model_kwargs['ct_ilk'] = ct_ilk
model_kwargs['WS_eff_ilk'] = WS_eff_ilk
if self.deflectionModel:
dw_ijlk, hcw_ijlk, dh_ijlk = self.deflectionModel.calc_deflection(
dw_ijl=dw_iil, hcw_ijl=hcw_iil, dh_ijl=dh_iil, **model_kwargs)
model_kwargs.update({'dw_ijlk': dw_ijlk, 'hcw_ijlk': hcw_ijlk, 'dh_ijlk': dh_ijlk,
'cw_ijlk': hypot(dh_iil[..., na], hcw_ijlk)})
self._reset_deficit()
if 'wake_radius_ijlk' in self.args4all:
model_kwargs['wake_radius_ijlk'] = self.wake_deficitModel.wake_radius(**model_kwargs)
if self.turbulenceModel:
model_kwargs['TI_eff_ilk'] = TI_eff_ilk
# Calculate deficit
if isinstance(self.superpositionModel, WeightedSum):
deficit_iilk, uc_iilk, sigmasqr_iilk, blockage_iilk = self._calc_deficit_convection(**model_kwargs)
else:
deficit_iilk, blockage_iilk = self._calc_deficit(**model_kwargs)
# Calculate effective wind speed
if isinstance(self.superpositionModel, WeightedSum):
WS_eff_ilk = WS_ilk - self.superpositionModel(WS_ilk, deficit_iilk,
uc_iilk, sigmasqr_iilk,
model_kwargs['cw_ijlk'],
model_kwargs['hcw_ijlk'],
dh_iil[..., na])
# Add blockage as linear effect
if self.blockage_deficitModel:
WS_eff_ilk -= (self.blockage_deficitModel.superpositionModel or LinearSum())(blockage_iilk)
else:
WS_eff_ilk = WS_ilk.astype(dtype) - self.superpositionModel(deficit_iilk)
if self.blockage_deficitModel:
WS_eff_ilk -= (self.blockage_deficitModel.superpositionModel or self.superpositionModel)(blockage_iilk)
# ensure idling wt in unstable flow cases do not cutin even if ws increases due to speedup
# this helps to converge
# WS_eff_ilk[ioff] = np.minimum(WS_eff_ilk[ioff], WS_eff_ilk_last[ioff])
WS_eff_ilk = np.minimum(WS_eff_ilk, WS_eff_ilk_last, out=WS_eff_ilk, where=ioff)
if self.turbulenceModel:
add_turb_ijlk = self.turbulenceModel(**model_kwargs)
TI_eff_ilk = self.turbulenceModel.calc_effective_TI(TI_ilk, add_turb_ijlk)
# Check if converged
diff_ilk = cabs(WS_eff_ilk_last - WS_eff_ilk)
diff_lk = diff_ilk.max(0)
max_diff = np.max(diff_lk)
if (self.convergence_tolerance and max_diff < self.convergence_tolerance):
break
# i_, l_, k_ = list(zip(*np.where(diff_ilk == max_diff)))[0]
# print("Iteration: %d, max diff_ilk: %.8f, WT: %d, WD: %d, WS: %f, WS_eff: %f" %
# (j, max_diff, i_, lw.wd[l_], lw.ws[k_], WS_eff_ilk[i_, l_, k_]))
# assume flow case to be unstable if slope of improvement of two iterations is lower than
# needed to converge within next 20 iteration
if j > 1:
unstable_lk |= (diff_lk_lastlast - diff_lk) / 2 <= (diff_lk -
self.convergence_tolerance) / min(20, (I - j))
WS_eff_ilk_last = WS_eff_ilk + 0 # fast autograd-friendly copy
diff_lk_lastlast = diff_lk_last
diff_lk_last = diff_lk
# print("All2AllIterative converge after %d iterations" % j)
self.iterations = j
self._reset_deficit()
return WS_eff_ilk, TI_eff_ilk, ct_ilk
class All2All(EngineeringWindFarmModel):
"""Wake and blockage deficits calculated from all wt to all points of interest (wt/map points).
The calculation is performed only once. I.e. CT and WS_eff are not updated!!!"""
def __init__(self, site, windTurbines, wake_deficitModel,
superpositionModel=LinearSum(),
blockage_deficitModel=None, deflectionModel=None, turbulenceModel=None):
"""Initialize flow model
Parameters
----------
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
wake_deficitModel : DeficitModel
Model describing the wake(downstream) deficit
superpositionModel : SuperpositionModel
Model defining how deficits sum up
blockage_deficitModel : DeficitModel
Model describing the blockage(upstream) deficit
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
convergence_tolerance : float
maximum accepted change in WS_eff_ilk [m/s]
"""
EngineeringWindFarmModel.__init__(self, site, windTurbines, wake_deficitModel, superpositionModel,
blockage_deficitModel=blockage_deficitModel, deflectionModel=deflectionModel,
turbulenceModel=turbulenceModel)
def _calc_wt_interaction(self, wd, WD_ilk, WS_ilk, TI_ilk,
WS_eff_ilk, TI_eff_ilk,
x_i, y_i, h_i, D_i, yaw_ilk, tilt_ilk,
I, L, K, **kwargs):
if any([np.iscomplexobj(v) for v in [x_i, y_i, h_i, D_i, yaw_ilk, tilt_ilk]]):
dtype = np.complex128
else:
dtype = float
dw_iil, hcw_iil, dh_iil = self.site.distance(wd_l=wd, WD_il=mean_deg(WD_ilk, 2))
D_src_il = D_i[:, na]
model_kwargs = {'WS_ilk': WS_ilk,
'TI_ilk': TI_ilk,
'TI_eff_ilk': TI_ilk,
'yaw_ilk': yaw_ilk,
'tilt_ilk': tilt_ilk,
'D_src_il': D_src_il,
'D_dst_ijl': D_src_il[na],
'dw_ijlk': dw_iil[..., na],
'hcw_ijlk': hcw_iil[..., na],
'cw_ijlk': np.sqrt(hcw_iil**2 + dh_iil**2)[..., na],
'dh_ijlk': dh_iil[..., na],
'h_il': h_i[:, na],
'IJLK': (I, I, L, K),
}
if 'wake_radius_ijl' in self.args4all:
model_kwargs['wake_radius_ijl'] = self.wake_deficitModel.wake_radius(**model_kwargs)[:, :, :, 0]
WS_ILK = np.broadcast_to(WS_ilk, (I, L, K))
ct_ilk = self.windTurbines.ct(WS_ILK, **kwargs)
model_kwargs['ct_ilk'] = ct_ilk
model_kwargs['WS_eff_ilk'] = WS_eff_ilk
if self.deflectionModel:
dw_ijlk, hcw_ijlk, dh_ijlk = self.deflectionModel.calc_deflection(
dw_ijl=dw_iil, hcw_ijl=hcw_iil, dh_ijl=dh_iil, **model_kwargs)
model_kwargs.update({'dw_ijlk': dw_ijlk, 'hcw_ijlk': hcw_ijlk, 'dh_ijlk': dh_ijlk,
'cw_ijlk': hypot(dh_iil[..., na], hcw_ijlk)})
self._reset_deficit()
if 'wake_radius_ijlk' in self.args4all:
model_kwargs['wake_radius_ijlk'] = self.wake_deficitModel.wake_radius(**model_kwargs)
if self.turbulenceModel:
model_kwargs['TI_eff_ilk'] = TI_eff_ilk
# Calculate deficit
if isinstance(self.superpositionModel, WeightedSum):
deficit_iilk, uc_iilk, sigmasqr_iilk, blockage_iilk = self._calc_deficit_convection(**model_kwargs)
else:
deficit_iilk, blockage_iilk = self._calc_deficit(**model_kwargs)
# Calculate effective wind speed
if isinstance(self.superpositionModel, WeightedSum):
WS_eff_ilk = WS_ilk - self.superpositionModel(WS_ilk, deficit_iilk,
uc_iilk, sigmasqr_iilk,
model_kwargs['cw_ijlk'],
model_kwargs['hcw_ijlk'],
dh_iil[..., na])
# Add blockage as linear effect
if self.blockage_deficitModel:
WS_eff_ilk -= (self.blockage_deficitModel.superpositionModel or LinearSum())(blockage_iilk)
else:
WS_eff_ilk = WS_ilk.astype(dtype) - self.superpositionModel(deficit_iilk)
if self.blockage_deficitModel:
WS_eff_ilk -= (self.blockage_deficitModel.superpositionModel or self.superpositionModel)(blockage_iilk)
if self.turbulenceModel:
add_turb_ijlk = self.turbulenceModel(**model_kwargs)
TI_eff_ilk = self.turbulenceModel.calc_effective_TI(TI_ilk, add_turb_ijlk)
return WS_eff_ilk, np.broadcast_to(TI_eff_ilk, (I, L, K)), np.broadcast_to(ct_ilk, (I, L, K))
def main():
if __name__ == '__main__':
from py_wake.examples.data.iea37 import IEA37Site, IEA37_WindTurbines
from py_wake.deficit_models.selfsimilarity import SelfSimilarityDeficit
from py_wake.deficit_models.gaussian import ZongGaussianDeficit
from py_wake.turbulence_models.stf import STF2017TurbulenceModel
from py_wake.flow_map import XYGrid
import matplotlib.pyplot as plt
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
from py_wake.deficit_models.noj import NOJDeficit
from py_wake.superposition_models import SquaredSum
# NOJ wake model
noj = PropagateDownwind(site, windTurbines, wake_deficitModel=NOJDeficit(), superpositionModel=SquaredSum())
# NOJ wake and selfsimilarity blockage
noj_ss = All2AllIterative(site, windTurbines, wake_deficitModel=NOJDeficit(), superpositionModel=SquaredSum(),
blockage_deficitModel=SelfSimilarityDeficit())
# Zong convection superposition
zongp_ss = PropagateDownwind(site, windTurbines, wake_deficitModel=ZongGaussianDeficit(), superpositionModel=WeightedSum(),
turbulenceModel=STF2017TurbulenceModel())
# Zong convection superposition
zong_ss = All2AllIterative(site, windTurbines, wake_deficitModel=ZongGaussianDeficit(), superpositionModel=WeightedSum(),
blockage_deficitModel=SelfSimilarityDeficit(), turbulenceModel=STF2017TurbulenceModel())
for wm in [noj, noj_ss, zongp_ss, zong_ss]:
sim = wm(x=x, y=y, wd=[30], ws=[9])
plt.figure()
sim.flow_map(XYGrid(resolution=200)).plot_wake_map()
plt.title(' AEP: %.3f GWh' % sim.aep().sum())
plt.show()
main()