-
Mads M. Pedersen authoredMads M. Pedersen authored
fuga.py 10.09 KiB
import os
import struct
from numpy import newaxis as na
import numpy as np
from py_wake.deficit_models.deficit_model import DeficitModel
from py_wake.superposition_models import LinearSum
from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative
from py_wake.rotor_avg_models.rotor_avg_model import RotorCenter
class FugaDeficit(DeficitModel):
ams = 5
invL = 0
args4deficit = ['WS_ilk', 'WS_eff_ilk', 'dw_ijlk', 'hcw_ijlk', 'dh_ijl', 'h_il', 'ct_ilk', 'D_src_il']
def __init__(self, LUT_path):
self.load(LUT_path)
def load(self, path):
with open(path + 'CaseData.bin', 'rb') as fid:
case_name = struct.unpack('127s', fid.read(127))[0] # @UnusedVariable
r = struct.unpack('d', fid.read(8))[0] # @UnusedVariable
zhub = struct.unpack('d', fid.read(8))[0]
lo_level = struct.unpack('I', fid.read(4))[0] # @UnusedVariable
hi_level = struct.unpack('I', fid.read(4))[0] # @UnusedVariable
z0 = struct.unpack('d', fid.read(8))[0]
zi = struct.unpack('d', fid.read(8))[0] # @UnusedVariable
ds = struct.unpack('d', fid.read(8))[0]
closure = struct.unpack('I', fid.read(4))[0] # @UnusedVariable
if os.path.getsize(path + 'CaseData.bin') == 187:
zeta0 = struct.unpack('d', fid.read(8))[0]
else:
with open(path + 'CaseData.bin', 'rb') as fid2:
info = fid2.read(127).decode()
zeta0 = float(info[info.index('Zeta0'):].replace("Zeta0=", ""))
# zeta0 = float(path[path.index('Zeta0'):].replace("Zeta0=", "").replace("/", ""))
def psim(zeta):
return self.ams * zeta
if not zeta0 >= 0: # pragma: no cover
# See Colonel.u2b.psim
raise NotImplementedError
factor = 1 / (1 - (psim(zhub * self.invL) - psim(zeta0)) / np.log(zhub / z0))
f = [f for f in os.listdir(path) if f.endswith("input.par") or f.endswith('inputfile.par')][0]
# z0_zi_zeta0 = os.path.split(os.path.dirname(path))[1]
# z0, zi, zeta0 = re.match('Z0=(\d+.\d+)Zi=(\d+)Zeta0=(\d+.\d+E\+\d+)', z0_zi_zeta0).groups()
with open(path + f) as fid:
lines = fid.readlines()
prefix = lines[0].strip()
nxW, nyW = map(int, lines[2:4])
dx, dy, sigmax, sigmay = map(float, lines[4:8]) # @UnusedVariable
self.lo_level, self.hi_level = map(int, lines[11:13])
self.dsAll = ds
zlevels = np.arange(self.lo_level, self.hi_level + 1)
mdu = [np.fromfile(path + prefix + '%04dUL.dat' % j, np.dtype('<f'), -1)
for j in zlevels]
self.du = -np.array(mdu, dtype=np.float32).reshape((len(mdu), nyW // 2, nxW)) * factor
self.z0 = z0
self.x0 = nxW // 4
self.dx = dx
self.x = np.arange(-self.x0, nxW * 3 / 4) * dx
self.y = np.arange(nyW // 2) * dy
self.dy = dy
if self.lo_level == self.hi_level == 9999:
self.z = [zhub]
else:
self.z = z0 * np.exp(zlevels * self.dsAll)
self.lut_interpolator = LUTInterpolator(self.x, self.y, self.z, self.du)
def interpolate(self, x, y, z):
x = np.maximum(np.minimum(x, self.x[-1]), self.x[0])
y = np.maximum(np.minimum(y, self.y[-1]), self.y[0])
z = np.maximum(np.minimum(z, self.z[-1]), self.z[0])
return self.lut_interpolator((x, y, z))
def _calc_layout_terms(self, dw_ijlk, hcw_ijlk, h_il, dh_ijl, **_):
self.mdu_ijlk = self.interpolate(dw_ijlk, np.abs(hcw_ijlk),
(h_il[:, na] + dh_ijl)[..., na]) * ~((dw_ijlk == 0) & (hcw_ijlk == 0))
def calc_deficit(self, WS_ilk, WS_eff_ilk, dw_ijlk, hcw_ijlk, dh_ijl, h_il, ct_ilk, **_):
if not self.deficit_initalized:
self._calc_layout_terms(dw_ijlk, hcw_ijlk, h_il, dh_ijl)
return self.mdu_ijlk * (ct_ilk * WS_eff_ilk**2 / WS_ilk)[:, na]
def wake_radius(self, D_src_il, **_):
# Set at twice the source radius for now
return D_src_il[:, na, :, na]
class LUTInterpolator(object):
# Faster than scipy.interpolate.interpolate.RegularGridInterpolator
def __init__(self, x, y, z, V):
self.x = x
self.y = y
self.z = z
self.V = V
self.nx = nx = len(x)
self.ny = ny = len(y)
self.nz = nz = len(z)
assert V.shape == (nz, ny, nx)
self.dx, self.dy = [xy[1] - xy[0] for xy in [x, y]]
self.x0 = x[0]
self.y0 = y[0]
Ve = np.concatenate((V, V[-1:]), 0)
Ve = np.concatenate((Ve, Ve[:, -1:]), 1)
Ve = np.concatenate((Ve, Ve[:, :, -1:]), 2)
self.V000 = np.array([V,
Ve[:-1, :-1, 1:],
Ve[:-1, 1:, :-1],
Ve[:-1, 1:, 1:],
Ve[1:, :-1, :-1],
Ve[1:, :-1, 1:],
Ve[1:, 1:, :-1],
Ve[1:, 1:, 1:]]).reshape((8, nz * ny * nx))
def __call__(self, xyz):
xp, yp, zp = xyz
def i0f(_i):
_i0 = np.asarray(_i).astype(np.int)
_if = _i - _i0
return _i0, _if
xi0, xif = i0f((xp - self.x0) / self.dx)
yi0, yif = i0f((yp - self.y0) / self.dy)
zi0, zif = i0f(np.interp(zp, self.z, np.arange(self.nz)))
nx, ny = self.nx, self.ny
v000, v001, v010, v011, v100, v101, v110, v111 = self.V000[:, zi0 * nx * ny + yi0 * nx + xi0]
v_00 = v000 + (v100 - v000) * zif
v_01 = v001 + (v101 - v001) * zif
v_10 = v010 + (v110 - v010) * zif
v_11 = v011 + (v111 - v011) * zif
v__0 = v_00 + (v_10 - v_00) * yif
v__1 = v_01 + (v_11 - v_01) * yif
return (v__0 + (v__1 - v__0) * xif)
# # Slightly slower
# xif1, yif1, zif1 = 1 - xif, 1 - yif, 1 - zif
# w = np.array([xif1 * yif1 * zif1,
# xif * yif1 * zif1,
# xif1 * yif * zif1,
# xif * yif * zif1,
# xif1 * yif1 * zif,
# xif * yif1 * zif,
# xif1 * yif * zif,
# xif * yif * zif])
#
# return np.sum(w * self.V01[:, zi0, yi0, xi0], 0)
class Fuga(PropagateDownwind):
def __init__(self, LUT_path, site, windTurbines,
rotorAvgModel=RotorCenter(), deflectionModel=None, turbulenceModel=None):
"""
Parameters
----------
LUT_path : str
path to look up tables
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
rotorAvgModel : RotorAvgModel
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
"""
PropagateDownwind.__init__(self, site, windTurbines,
wake_deficitModel=FugaDeficit(LUT_path),
rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),
deflectionModel=deflectionModel, turbulenceModel=turbulenceModel)
class FugaBlockage(All2AllIterative):
def __init__(self, LUT_path, site, windTurbines,
rotorAvgModel=RotorCenter(),
deflectionModel=None, turbulenceModel=None, convergence_tolerance=1e-6):
"""
Parameters
----------
LUT_path : str
path to look up tables
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
rotorAvgModel : RotorAvgModel
Model defining one or more points at the down stream rotors to
calculate the rotor average wind speeds from.\n
Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only
deflectionModel : DeflectionModel
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel
Model describing the amount of added turbulence in the wake
"""
fuga_deficit = FugaDeficit(LUT_path)
All2AllIterative.__init__(self, site, windTurbines, wake_deficitModel=fuga_deficit,
rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),
blockage_deficitModel=fuga_deficit, turbulenceModel=turbulenceModel,
convergence_tolerance=convergence_tolerance)
def main():
if __name__ == '__main__':
from py_wake.examples.data.iea37 import iea37_path
from py_wake.examples.data.iea37._iea37 import IEA37Site
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
import matplotlib.pyplot as plt
# setup site, turbines and wind farm model
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
from py_wake.tests.test_files import tfp
path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+0/'
for wf_model in [Fuga(path, site, windTurbines),
FugaBlockage(path, site, windTurbines)]:
plt.figure()
print(wf_model)
# run wind farm simulation
sim_res = wf_model(x, y)
# calculate AEP
aep = sim_res.aep().sum()
# plot wake map
flow_map = sim_res.flow_map(wd=30, ws=9.8)
flow_map.plot_wake_map()
flow_map.plot_windturbines()
plt.title('AEP: %.2f GWh' % aep)
plt.show()
plt.show()
main()