-
Mads M. Pedersen authoredMads M. Pedersen authored
test_windturbines.py 6.34 KiB
import os
import matplotlib.pyplot as plt
import numpy as np
from py_wake import NOJ
from py_wake.examples.data import wtg_path
from py_wake.examples.data.hornsrev1 import V80, wt9_x, wt9_y, Hornsrev1Site
from py_wake.examples.data.iea37 import iea37_reader
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
from py_wake.gradients import use_autograd_in, autograd, plot_gradients, fd
from py_wake.tests import npt
from py_wake.wind_turbines import WindTurbines
def _test_wts_wtg(wts_wtg):
assert(wts_wtg.name(types=0) == 'Vestas V80 (2MW, Offshore)')
assert(wts_wtg.diameter(types=0) == 80)
assert(wts_wtg.hub_height(types=0) == 67)
npt.assert_array_equal(wts_wtg.power(np.array([0, 3, 5, 9, 18, 26]),
type_i=0), np.array([0, 0, 154000, 996000, 2000000, 0]))
npt.assert_array_equal(wts_wtg.ct(np.array([1, 4, 7, 9, 17, 27]), type_i=0),
np.array([0, 0.818, 0.805, 0.807, 0.167, 0]))
assert(wts_wtg.name(types=1) == 'NEG-Micon 2750/92 (2750 kW)')
assert(wts_wtg.diameter(types=1) == 92)
assert(wts_wtg.hub_height(types=1) == 70)
npt.assert_array_equal(wts_wtg.power(np.array([0, 3, 5, 9, 18, 26]),
type_i=1), np.array([0, 0, 185000, 1326000, 2748000, 0]))
npt.assert_array_equal(wts_wtg.ct(np.array([1, 4, 7, 9, 17, 27]), type_i=1),
np.array([0, 0.871, 0.841, 0.797, 0.175, 0]))
def test_from_WAsP_wtg():
vestas_v80_wtg = os.path.join(wtg_path, 'Vestas-V80.wtg')
NEG_2750_wtg = os.path.join(wtg_path, 'NEG-Micon-2750.wtg')
_test_wts_wtg(WindTurbines.from_WAsP_wtg([vestas_v80_wtg, NEG_2750_wtg]))
def test_from_WindTurbines():
vestas_v80_wtg = WindTurbines.from_WAsP_wtg(os.path.join(wtg_path, 'Vestas-V80.wtg'))
NEG_2750_wtg = WindTurbines.from_WAsP_wtg(os.path.join(wtg_path, 'NEG-Micon-2750.wtg'))
_test_wts_wtg(WindTurbines.from_WindTurbines([vestas_v80_wtg, NEG_2750_wtg]))
def test_twotype_windturbines():
v80 = V80()
def power(ws, types):
power = v80.power(ws)
# add 10% type 1 turbines
power[types == 1] *= 1.1
return power
wts = WindTurbines(names=['V80', 'V88'],
diameters=[80, 88],
hub_heights=[70, 77],
ct_funcs=[v80.ct_funcs[0],
v80.ct_funcs[0]],
power_funcs=[v80.power,
lambda ws:v80.power(ws) * 1.1],
power_unit='w'
)
import matplotlib.pyplot as plt
types0 = [0] * 9
types1 = [0, 0, 0, 1, 1, 1, 0, 0, 0]
types2 = [1] * 9
wts.plot(wt9_x, wt9_y, types1)
wfm = NOJ(Hornsrev1Site(), wts)
npt.assert_array_equal(wts.types(), [0, 1])
npt.assert_almost_equal(wfm(wt9_x, wt9_y, type=types0).aep(), 81.2066072392765)
npt.assert_almost_equal(wfm(wt9_x, wt9_y, type=types1).aep(), 83.72420504573488)
npt.assert_almost_equal(wfm(wt9_x, wt9_y, type=types2).aep(), 88.87227386796884)
if 0:
plt.show()
def test_get_defaults():
v80 = V80()
npt.assert_array_equal(np.array(v80.get_defaults(1))[:, 0], [0, 70, 80])
npt.assert_array_equal(np.array(v80.get_defaults(1, h_i=100))[:, 0], [0, 100, 80])
npt.assert_array_equal(np.array(v80.get_defaults(1, d_i=100))[:, 0], [0, 70, 100])
def test_gradients():
wt = IEA37_WindTurbines()
with use_autograd_in([WindTurbines, iea37_reader]):
ws_lst = np.arange(3, 25, .1)
plt.plot(ws_lst, wt.power(ws_lst))
ws_pts = np.array([3., 6., 9., 12.])
dpdu_lst = np.diag(autograd(wt.power)(ws_pts))
if 0:
for dpdu, ws in zip(dpdu_lst, ws_pts):
plot_gradients(wt.power(ws), dpdu, ws, "", 1)
plt.show()
dpdu_ref = np.where((ws_pts > 4) & (ws_pts <= 9.8),
3 * 3350000 * (ws_pts - 4)**2 / (9.8 - 4)**3,
0)
npt.assert_array_almost_equal(dpdu_lst, dpdu_ref)
def test_plot_yz():
wt = IEA37_WindTurbines()
wt.plot_yz([0, 300])
if 0:
plt.show()
def test_set_gradients():
wt = IEA37_WindTurbines()
wt.set_gradient_funcs(lambda ws: np.where((ws > 4) & (ws <= 9.8),
100000 * ws, # not the right gradient, but similar to the reference
0), lambda ws: 0)
with use_autograd_in([WindTurbines, iea37_reader]):
ws_lst = np.arange(3, 25, .1)
plt.plot(ws_lst, wt.power(ws_lst))
ws_pts = np.array([3., 6., 9., 12.])
dpdu_lst = np.diag(autograd(wt.power)(ws_pts))
if 0:
for dpdu, ws in zip(dpdu_lst, ws_pts):
plot_gradients(wt.power(ws), dpdu, ws, "", 1)
plt.show()
dpdu_ref = np.where((ws_pts > 4) & (ws_pts <= 9.8),
100000 * ws_pts,
0)
npt.assert_array_almost_equal(dpdu_lst, dpdu_ref)
def test_spline():
wt_tab = V80()
wt_spline = V80()
wt_spline.spline_ct_power(err_tol_factor=1e-2)
ws_lst = np.arange(3, 25, .001)
# mean and max error
assert (wt_tab.power(ws_lst) - wt_spline.power(ws_lst)).mean() < 1
assert ((wt_tab.power(ws_lst) - wt_spline.power(ws_lst)).max()) < 1400
# max change of gradient 80 times lower
assert np.diff(np.diff(wt_spline.power(ws_lst))).max() * 80 < np.diff(np.diff(wt_tab.power(ws_lst))).max()
ws_pts = [6.99, 7.01]
dpdu_tab_pts = np.diag(fd(wt_tab.power)(np.array(ws_pts)))
with use_autograd_in():
dpdu_spline_pts = np.diag(autograd(wt_spline.power)(np.array(ws_pts)))
npt.assert_array_almost_equal(dpdu_spline_pts, [205555.17794162, 211859.45965873])
if 0:
plt.plot(ws_lst, wt_tab.power(ws_lst))
plt.plot(ws_lst, wt_spline.power(ws_lst))
for wt, dpdu_pts, label in [(wt_tab, dpdu_tab_pts, 'V80 tabular'),
(wt_spline, dpdu_spline_pts, 'V80 spline')]:
for ws, dpdu in zip(ws_pts, dpdu_pts):
plot_gradients(wt.power(ws), dpdu, ws, label, 1)
ax = plt.gca().twinx()
ax.plot(ws_lst, wt.power(ws_lst) - wt_spline.power(ws_lst))
plt.figure()
plt.plot(np.diff(np.diff(wt_tab.power(ws_lst))))
plt.plot(np.diff(np.diff(wt_spline.power(ws_lst))))
plt.show()