-
Mads M. Pedersen authored
Implemented wake_radius() function for the different wake models and modified args4turb to be independant from deficit
Mads M. Pedersen authoredImplemented wake_radius() function for the different wake models and modified args4turb to be independant from deficit
noj.py 6.92 KiB
from numpy import newaxis as na
import numpy as np
from py_wake.deficit_models import DeficitModel
from py_wake.superposition_models import SquaredSum
from py_wake.wind_farm_models.engineering_models import PropagateDownwind
class AreaOverlappingFactor():
def __init__(self, k=.1):
self.k = k
def overlapping_area_factor(self, wake_radius_ijlk, dw_ijlk, cw_ijlk, D_src_il, D_dst_ijl):
"""Calculate overlapping factor
Parameters
----------
dw_jl : array_like
down wind distance [m]
cw_jl : array_like
cross wind distance [m]
D_src_l : array_like
Diameter of source turbines [m]
D_dst_jl : array_like or None
Diameter of destination turbines [m]. If None destination is assumed to be a point
Returns
-------
A_ol_factor_jl : array_like
area overlaping factor
"""
if D_dst_ijl is None:
return wake_radius_ijlk > cw_ijlk
else:
return self._cal_overlapping_area_factor(wake_radius_ijlk,
(D_dst_ijl[..., na] / 2),
np.abs(cw_ijlk))
def _cal_overlapping_area_factor(self, R1, R2, d):
""" Calculate the overlapping area of two circles with radius R1 and
R2, centers distanced d.
The calculation formula can be found in Eq. (A1) of :
[Ref] Feng J, Shen WZ, Solving the wind farm layout optimization
problem using Random search algorithm, Reneable Energy 78 (2015)
182-192
Note that however there are typos in Equation (A1), '2' before alpha
and beta should be 1.
Parameters
----------
R1: array:float
Radius of the first circle [m]
R2: array:float
Radius of the second circle [m]
d: array:float
Distance between two centers [m]
Returns
-------
A_ol: array:float
Overlapping area [m^2]
"""
# treat all input as array
R1, R2, d = [np.asarray(a) for a in [R1, R2, d]]
if R2.shape != R1.shape:
R2 = np.zeros_like(R1) + R2
A_ol_f = np.zeros_like(R1)
p = (R1 + R2 + d) / 2.0
# make sure R_big >= R_small
Rmax = np.where(R1 < R2, R2, R1)
Rmin = np.where(R1 < R2, R1, R2)
# full wake cases
index_fullwake = (d <= (Rmax - Rmin))
A_ol_f[index_fullwake] = 1
# partial wake cases
mask = (d > (Rmax - Rmin)) & (d < (Rmin + Rmax))
# in somecases cos_alpha or cos_beta can be larger than 1 or less than
# -1.0, cause problem to arccos(), resulting nan values, here fix this
# issue.
def arccos_lim(x):
return np.arccos(np.maximum(np.minimum(x, 1), -1))
alpha = arccos_lim((Rmax[mask]**2.0 + d[mask]**2 - Rmin[mask]**2) /
(2.0 * Rmax[mask] * d[mask]))
beta = arccos_lim((Rmin[mask]**2.0 + d[mask]**2 - Rmax[mask]**2) /
(2.0 * Rmin[mask] * d[mask]))
A_triangle = np.sqrt(p[mask] * (p[mask] - Rmin[mask]) *
(p[mask] - Rmax[mask]) * (p[mask] - d[mask]))
A_ol_f[mask] = (alpha * Rmax[mask]**2 + beta * Rmin[mask]**2 -
2.0 * A_triangle) / (R2[mask]**2 * np.pi)
return A_ol_f
class NOJDeficit(DeficitModel, AreaOverlappingFactor):
args4deficit = ['WS_ilk', 'D_src_il', 'D_dst_ijl', 'dw_ijlk', 'cw_ijlk', 'ct_ilk']
def __init__(self, k=.1):
AreaOverlappingFactor.__init__(self, k)
def _calc_layout_terms(self, WS_ilk, D_src_il, D_dst_ijl, dw_ijlk, cw_ijlk, **_):
R_src_il = D_src_il / 2
term_denominator_ijlk = (1 + self.k * dw_ijlk / R_src_il[:, na, :, na])**2
term_denominator_ijlk += (term_denominator_ijlk == 0)
A_ol_factor_ijlk = self.overlapping_area_factor(self.wake_radius(D_src_il, dw_ijlk),
dw_ijlk, cw_ijlk, D_src_il, D_dst_ijl)
with np.warnings.catch_warnings():
np.warnings.filterwarnings('ignore', r'invalid value encountered in true_divide')
self.layout_factor_ijlk = WS_ilk[:, na] * (dw_ijlk > 0) * (A_ol_factor_ijlk / term_denominator_ijlk)
def calc_deficit(self, WS_ilk, D_src_il, D_dst_ijl, dw_ijlk, cw_ijlk, ct_ilk, **_):
if not self.deficit_initalized:
self._calc_layout_terms(WS_ilk, D_src_il, D_dst_ijl, dw_ijlk, cw_ijlk)
ct_ilk = np.minimum(ct_ilk, 1) # treat ct_ilk for np.sqrt()
term_numerator_ilk = (1 - np.sqrt(1 - ct_ilk))
return term_numerator_ilk[:, na] * self.layout_factor_ijlk
def wake_radius(self, D_src_il, dw_ijlk, **_):
wake_radius_ijlk = (self.k * dw_ijlk + D_src_il[:, na, :, na] / 2)
return wake_radius_ijlk
class NOJ(PropagateDownwind):
def __init__(self, site, windTurbines, k=.1, superpositionModel=SquaredSum(),
deflectionModel=None, turbulenceModel=None):
"""
Parameters
----------
site : Site
Site object
windTurbines : WindTurbines
WindTurbines object representing the wake generating wind turbines
k : float, default 0.1
wake expansion factor
superpositionModel : SuperpositionModel, default SquaredSum
Model defining how deficits sum up
blockage_deficitModel : DeficitModel, default None
Model describing the blockage(upstream) deficit
deflectionModel : DeflectionModel, default None
Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
turbulenceModel : TurbulenceModel, default None
Model describing the amount of added turbulence in the wake
"""
PropagateDownwind.__init__(self, site, windTurbines,
wake_deficitModel=NOJDeficit(k),
superpositionModel=superpositionModel,
deflectionModel=deflectionModel,
turbulenceModel=turbulenceModel)
def main():
if __name__ == '__main__':
from py_wake.examples.data.iea37._iea37 import IEA37Site
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
import matplotlib.pyplot as plt
# setup site, turbines and wind farm model
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = NOJ(site, windTurbines)
print(wf_model)
# run wind farm simulation
sim_res = wf_model(x, y)
# calculate AEP
aep = sim_res.aep()
print(aep)
# plot wake map
flow_map = sim_res.flow_map(wd=30, ws=9.8)
flow_map.plot_wake_map()
flow_map.plot_windturbines()
plt.title('AEP: %.2f GWh' % aep)
plt.show()
main()