Skip to content
Snippets Groups Projects
Commit 17c7c932 authored by Mads M. Pedersen's avatar Mads M. Pedersen
Browse files

update wt notebook

parent ba921094
No related branches found
No related tags found
3 merge requests!624Multi mirror,!607Cupy RANS NN Surrogate Inference Changes,!253update wt notebook
Pipeline #20610 failed
%% Cell type:markdown id: tags:
# WindTurbines
%% Cell type:markdown id: tags:
For a given wind turbine type and effective wind speed (WSeff), the `WindTurbines` object provides the power and thrust coefficient (CT), as well as the wind turbine hub height (H) and diameter (D).
%% Cell type:markdown id: tags:
## Setting up Windturbine objects
%% Cell type:markdown id: tags:
### Predefined example WindTurbines
PyWake contains a few predefined turbines, e.g. the V80 from Hornsrev1, the 3.35MW from IEA task 37 and the DTU10MW.
%% Cell type:code id: tags:
``` python
# Install PyWake if needed
try:
import py_wake
except ModuleNotFoundError:
!pip install git+https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake.git
```
%% Cell type:code id: tags:
``` python
import os
import numpy as np
import matplotlib.pyplot as plt
from py_wake.wind_turbines import WindTurbines
from py_wake.examples.data.hornsrev1 import V80
from py_wake.examples.data.iea37 import IEA37_WindTurbines, IEA37Site
from py_wake.examples.data.dtu10mw import DTU10MW
v80 = V80()
iea37 = IEA37_WindTurbines()
dtu10mw = DTU10MW()
```
%% Cell type:markdown id: tags:
### Import from WAsP wtg files
%% Cell type:code id: tags:
``` python
from py_wake.examples.data import wtg_path
wtg_file = os.path.join(wtg_path, 'NEG-Micon-2750.wtg')
neg2750 = WindTurbines.from_WAsP_wtg(wtg_file)
```
%% Cell type:markdown id: tags:
### User-defined WindTurbines
%% Cell type:code id: tags:
``` python
from py_wake.wind_turbines import WindTurbine
from py_wake.wind_turbines.power_ct_functions import PowerCtTabular
u = [0,3,12,25,30]
ct = [0,8/9,8/9,.3, 0]
power = [0,0,2000,2000,0]
my_wt = WindTurbine(name='MyWT',
diameter=123,
hub_height=321,
powerCtFunction=PowerCtTabular(u,power,'kW',ct))
```
%% Cell type:markdown id: tags:
### Multitype Wind Turbines
## Multi-type Wind Turbines
You can collect a list of different turbine types into a single WindTurbines object
%% Cell type:code id: tags:
``` python
wts = WindTurbines.from_WindTurbine_lst([v80,iea37,dtu10mw,my_wt,neg2750])
```
%% Cell type:code id: tags:
``` python
wts.name(type=3)
```
%% Output
'MyWT'
%% Cell type:code id: tags:
``` python
types = range(5)
print ("Name:\t\t%s" % "\t".join(wts.name(types)))
print('Diameter[m]\t%s' % "\t".join(map(str,wts.diameter(type=types))))
print('Hubheigt[m]\t%s' % "\t".join(map(str,wts.hub_height(type=types))))
```
%% Output
Name: V80 3.35MW DTU10MW MyWT NEG-Micon 2750/92 (2750 kW)
Diameter[m] 80.0 130.0 178.3 123.0 92.0
Hubheigt[m] 70.0 110.0 119.0 321.0 70.0
%% Cell type:markdown id: tags:
#### Power curve
%% Cell type:code id: tags:
``` python
ws = np.arange(3,25)
plt.xlabel('Wind speed [m/s]')
plt.ylabel('Power [kW]')
for t in types:
plt.plot(ws, wts.power(ws, type=t)*1e-3,'.-', label=wts.name(t))
plt.legend(loc=1)
```
%% Output
<matplotlib.legend.Legend at 0x25a6d4fc160>
<matplotlib.legend.Legend at 0x25fce538a30>
%% Cell type:markdown id: tags:
#### CT curve
%% Cell type:code id: tags:
``` python
plt.xlabel('Wind speed [m/s]')
plt.ylabel('Ct [-]')
for t in types:
plt.plot(ws, wts.ct(ws, type=t)*1e-3,'.-', label=wts.name(t))
plt.legend(loc=1)
```
%% Output
<matplotlib.legend.Legend at 0x25a6e953d60>
<matplotlib.legend.Legend at 0x25fce8b3070>
%% Cell type:markdown id: tags:
### Plot
## Multidimensional Power/Ct curves
%% Cell type:markdown id: tags:
Some WAsP wtg files defines multiple wind turbine modes. E.g. the `Vestas V112-3.0 MW.wtg` which has 12 modes representing different levels of air density. In this case, the mode defaults to 0.
%% Cell type:code id: tags:
``` python
wtg_file = os.path.join(wtg_path, 'Vestas V112-3.0 MW.wtg')
v112 = WindTurbines.from_WAsP_wtg(wtg_file)
required_inputs, optional_inputs = v112.power_ct_inputs
upct = {}
for m in [0,1,5]:
plt.plot(v112.power(ws, mode=m)/1000, label=f'mode: {m}')
p0,ct0 = v112.power_ct(ws, mode=0)
p1,ct1 = v112.power_ct(ws, mode=1)
plt.ylabel('Power [kW]')
plt.xlabel('Wind speed [m/s]')
plt.legend()
```
%% Output
<matplotlib.legend.Legend at 0x25fcd44d9d0>
%% Cell type:markdown id: tags:
### Discrete dimensions (e.g. operational mode)
WindTurbines can be defined using a `PowerCtFunctionList`. In fact this is the approach used by multi-mode WAsP wind turbines and also when creating multi-type wind turbine (in which case the key is `type`)
%% Cell type:code id: tags:
``` python
from py_wake.wind_turbines.power_ct_functions import PowerCtFunctionList
mode0_power_ct=PowerCtTabular(ws, p0, 'w', ct0)
mode1_power_ct=PowerCtTabular(ws, p1, 'w', ct1)
multimode_power_ct = PowerCtFunctionList(key='mode',
powerCtFunction_lst=[mode0_power_ct, mode1_power_ct],
default_value=None)
wt = WindTurbine('MultimodeWT', 112, 84, powerCtFunction=multimode_power_ct)
for m in [0,1]:
plt.plot(wt.power(ws, mode=m)/1000, label=f'mode: {m}')
plt.ylabel('Power [kW]')
plt.xlabel('Wind speed [m/s]')
plt.legend()
```
%% Output
<matplotlib.legend.Legend at 0x25fce978e80>
%% Cell type:markdown id: tags:
### Multidimentional power/ct tabulars
It is also possible to setup a wind turbine using a multidimensional power and ct tabular array. In this case the power can ct values will be calculated usign multidimensional linear interpolation
%% Cell type:code id: tags:
``` python
from py_wake.wind_turbines.power_ct_functions import PowerCtNDTabular
# setup multidimensional power and ct tabulars
# p0,ct0 ~ rho=0.95
# p1,ct1 ~ rho=1.225
power_array = np.array([p1,p0]).T
ct_array = np.array([ct1,ct0]).T
density = [0.95,1.225]
powerCtFunction = PowerCtNDTabular(input_keys=['ws','rho'],
value_lst=[ws,density],
power_arr=power_array, power_unit='w',
ct_arr=ct_array)
wt = WindTurbine('AirDensityDependentWT', 112, 84, powerCtFunction=powerCtFunction)
for r in [0.995,1.1,1.225]:
plt.plot(wt.power(ws, rho=r)/1000, label=f'Air density: {r}')
plt.ylabel('Power [kW]')
plt.xlabel('Wind speed [m/s]')
plt.legend()
```
%% Output
<matplotlib.legend.Legend at 0x25fce9e1340>
%% Cell type:markdown id: tags:
### Continous Power/Ct functions
Finally, the Power can Ct can be calculated using a function which may take multiple input variables.
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
from py_wake.wind_turbines.power_ct_functions import PowerCtFunction
def density_scaled_power_ct(u, rho=1.225):
# function to calculate power and ct
rated_power = 3e6
density_scale=rho/.95
return (np.minimum(np.interp(u,ws, p0) * density_scale, rated_power), # density scaled power, limited by rated power
u*0) #dummy ct
powerCtFunction = PowerCtFunction(
input_keys=['ws','rho'],
power_ct_func=density_scaled_power_ct,
power_unit='w',
optional_inputs=['rho'], # allowed to be optional as a default value is speficifyed in density_scaled_power_ct
)
wt = WindTurbine('AirDensityDependentWT', 112, 84, powerCtFunction=powerCtFunction)
for r in [0.995,1.1,1.5]:
plt.plot(wt.power(ws, rho=r)/1000, label=f'Air density: {r}')
plt.ylabel('Power [kW]')
plt.xlabel('Wind speed [m/s]')
plt.legend()
```
%% Output
<matplotlib.legend.Legend at 0x25fce9e11f0>
%% Cell type:markdown id: tags:
## Interpolation method
%% Cell type:markdown id: tags:
### PowerCtTabular
`PowerCtTabular` takes a `method` argument which can be
- `linear`: Linear interpolation (default)
- `pchip`: Piecewise Cubic Hermite Interpolating Polynomial. Smooth interpolation with continous first order derivatives and not overshoots
- `spline`: Smooth interpolation with continous first and second order derivatives. Closer to original piecewise linear curve, but may have overshoots
%% Cell type:code id: tags:
``` python
wt_lst = [(m, V80(method=m)) for m in ['linear','pchip','spline']]
ws = np.linspace(14.8,20,1000)
for n, wt in wt_lst:
plt.plot(ws, wt.power(ws)/1e3, label=n)
plt.ylabel('Power [kW]')
plt.xlabel('Wind speed [m/s]')
plt.legend()
```
%% Output
<matplotlib.legend.Legend at 0x25fce9df460>
%% Cell type:markdown id: tags:
## Plot
%% Cell type:code id: tags:
``` python
# Top-view plot
from py_wake.examples.data.hornsrev1 import Hornsrev1Site
s = IEA37Site(16)
x,y = s.initial_position.T
wts.plot(x,y,type=np.arange(len(x))%len(types))
```
%% Output
%% Cell type:code id: tags:
``` python
# Side-view plot
import numpy as np
yaw_lst = np.array([-30, 10, 90])
wd=0
wts.plot_yz(np.array([-600,0,600]), wd=wd, types=[0,1,2], yaw=yaw_lst)
for i, yaw in enumerate(yaw_lst):
plt.plot([], 'gray', label="WT %d yaw: %d deg" % (i, yaw))
```
%% Output
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment