Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
PyWake
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
TOPFARM
PyWake
Commits
d73f5a0f
Commit
d73f5a0f
authored
1 year ago
by
Mads M. Pedersen
Browse files
Options
Downloads
Patches
Plain Diff
Update WakeDeflection.ipynb
parent
2a388400
No related branches found
Branches containing commit
No related tags found
3 merge requests
!624
Multi mirror
,
!607
Cupy RANS NN Surrogate Inference Changes
,
!556
Update WakeDeflection.ipynb
Pipeline
#51240
passed
1 year ago
Stage: test
Stage: test_plugins
Stage: deploy
Changes
1
Pipelines
22
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/notebooks/exercises/WakeDeflection.ipynb
+15
-8
15 additions, 8 deletions
docs/notebooks/exercises/WakeDeflection.ipynb
with
15 additions
and
8 deletions
docs/notebooks/exercises/WakeDeflection.ipynb
+
15
−
8
View file @
d73f5a0f
...
...
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
"execution_count":
1
,
"execution_count":
null
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -80,12 +80,12 @@
"outputs": [],
"source": [
"# define function that plots the flow field and AEP history of 3 wind turbines\n",
"def plot_flow_field_and_aep(WT0, WT1):\n",
"def plot_flow_field_and_aep(WT0, WT1
, TILT
):\n",
" \n",
" ax1 = plt.figure(figsize=(20,4)).gca()\n",
" ax2 = plt.figure(figsize=(10,3)).gca()\n",
" \n",
" sim_res = wfm(x, y, yaw=np.reshape([WT0,WT1,0],(3,1,1)), wd=270, ws=10)\n",
" sim_res = wfm(x, y, yaw=np.reshape([WT0,WT1,0],(3,1,1)), wd=270, ws=10
, tilt=TILT
)\n",
" sim_res.flow_map(HorizontalGrid(x = np.linspace(0,1400,200), y=np.linspace(-200,200,50))).plot_wake_map(ax=ax1)\n",
" ax1.set_xlim([-200,1400])\n",
" aep.append(sim_res.aep().values[:,0,0])\n",
...
...
@@ -113,7 +113,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkwAAAFlCAYAAACp9sQiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiCElEQVR4nO3df2zX1aH/8VdBaV28rXgZBVn9srtfblHBgXbVeReTziYzLPyxhOkihOkWvV4v0rsMUKRz3lH3Q8NNwBGZi/f+QWAzkyyD4PV2I7vG5hJhTWYiepl6IWatcBdaVzfq2n7/uFmXXkD51JYq5/FIPn/0eM7nfT7+cVLy7PvzrhoeHh4OAAAAAABAwaZM9gYAAAAAAAAmm2ACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABSv4mDyy1/+MosWLcpFF12Uqqqq7Nix423X7NmzJ5/85CdTXV2dD3/4w3nsscfGsFUAAAAAAICJUXEw6e/vz7x587Jp06bTmv/yyy/nhhtuyHXXXZeurq7cddddufXWW/Pkk09WvFkAAAAAAICJUDU8PDw85sVVVXniiSeyePHiU85ZtWpVdu7cmeeee25k7Itf/GKOHTuW3bt3j/XSAAAAAAAA4+acib5AZ2dnmpubR421tLTkrrvuOuWa48eP5/jx4yM/Dw0N5Xe/+13++q//OlVVVRO1VQAAAAAA4D1geHg4r7/+ei666KJMmTI+j2uf8GDS3d2d+vr6UWP19fXp6+vLH/7wh5x33nknrGlvb89999030VsDAAAAAADeww4fPpwPfOAD4/JeEx5MxmLNmjVpbW0d+bm3tzcXX3xxDh8+nNra2kncGQAAAAAAMNn6+vrS0NCQv/qrvxq395zwYDJr1qz09PSMGuvp6Ultbe1J7y5Jkurq6lRXV58wXltbK5gAAAAAAABJMq6P8RifL/Z6C01NTeno6Bg19tRTT6WpqWmiLw0AAAAAAHBaKg4mv//979PV1ZWurq4kycsvv5yurq4cOnQoyf9+ndbSpUtH5t9222156aWX8vWvfz0HDhzIww8/nB/96EdZuXLl+HwCAAAAAACAd6jiYPLss8/miiuuyBVXXJEkaW1tzRVXXJF169YlSX7729+OxJMk+eAHP5idO3fmqaeeyrx58/Lggw/mBz/4QVpaWsbpIwAAAAAAALwzVcPDw8OTvYm309fXl7q6uvT29nqGCQAAAAAAFG4iusGEP8MEAAAAAADg3U4wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRtTMNm0aVPmzp2bmpqaNDY2Zu/evW85f8OGDfnYxz6W8847Lw0NDVm5cmX++Mc/jmnDAAAAAAAA463iYLJ9+/a0tramra0t+/fvz7x589LS0pLXXnvtpPO3bt2a1atXp62tLc8//3weffTRbN++PXffffc73jwAAAAAAMB4qDiYPPTQQ/nKV76S5cuX5xOf+EQ2b96c973vffnhD3940vnPPPNMrrnmmtx0002ZO3durr/++tx4441ve1cKAAAAAADAmVJRMBkYGMi+ffvS3Nz8lzeYMiXNzc3p7Ow86Zqrr746+/btGwkkL730Unbt2pXPfe5zp7zO8ePH09fXN+oFAAAAAAAwUc6pZPLRo0czODiY+vr6UeP19fU5cODASdfcdNNNOXr0aD796U9neHg4f/rTn3Lbbbe95Vdytbe357777qtkawAAAAAAAGM2poe+V2LPnj1Zv359Hn744ezfvz8/+clPsnPnztx///2nXLNmzZr09vaOvA4fPjzR2wQAAAAAAApW0R0mM2bMyNSpU9PT0zNqvKenJ7NmzTrpmnvvvTc333xzbr311iTJZZddlv7+/nz1q1/NPffckylTTmw21dXVqa6urmRrAAAAAAAAY1bRHSbTpk3LggUL0tHRMTI2NDSUjo6ONDU1nXTNG2+8cUIUmTp1apJkeHi40v0CAAAAAACMu4ruMEmS1tbWLFu2LAsXLsxVV12VDRs2pL+/P8uXL0+SLF26NHPmzEl7e3uSZNGiRXnooYdyxRVXpLGxMQcPHsy9996bRYsWjYQTAAAAAACAyVRxMFmyZEmOHDmSdevWpbu7O/Pnz8/u3btHHgR/6NChUXeUrF27NlVVVVm7dm1effXVvP/978+iRYvyrW99a/w+BQAAAAAAwDtQNfwe+F6svr6+1NXVpbe3N7W1tZO9HQAAAAAAYBJNRDeo6BkmAAAAAAAAZyPBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKN6YgsmmTZsyd+7c1NTUpLGxMXv37n3L+ceOHcsdd9yR2bNnp7q6Oh/96Eeza9euMW0YAAAAAABgvJ1T6YLt27entbU1mzdvTmNjYzZs2JCWlpa88MILmTlz5gnzBwYG8tnPfjYzZ87M448/njlz5uS///u/c8EFF4zH/gEAAAAAAN6xquHh4eFKFjQ2NubKK6/Mxo0bkyRDQ0NpaGjInXfemdWrV58wf/Pmzfnud7+bAwcO5Nxzzx3TJvv6+lJXV5fe3t7U1taO6T0AAAAAAICzw0R0g4q+kmtgYCD79u1Lc3PzX95gypQ0Nzens7PzpGt++tOfpqmpKXfccUfq6+tz6aWXZv369RkcHDzldY4fP56+vr5RLwAAAAAAgIlSUTA5evRoBgcHU19fP2q8vr4+3d3dJ13z0ksv5fHHH8/g4GB27dqVe++9Nw8++GD+6Z/+6ZTXaW9vT11d3ciroaGhkm0CAAAAAABUZEwPfa/E0NBQZs6cmUceeSQLFizIkiVLcs8992Tz5s2nXLNmzZr09vaOvA4fPjzR2wQAAAAAAApW0UPfZ8yYkalTp6anp2fUeE9PT2bNmnXSNbNnz865556bqVOnjox9/OMfT3d3dwYGBjJt2rQT1lRXV6e6urqSrQEAAAAAAIxZRXeYTJs2LQsWLEhHR8fI2NDQUDo6OtLU1HTSNddcc00OHjyYoaGhkbEXX3wxs2fPPmksAQAAAAAAONMq/kqu1tbWbNmyJf/yL/+S559/Prfffnv6+/uzfPnyJMnSpUuzZs2akfm33357fve732XFihV58cUXs3Pnzqxfvz533HHH+H0KAAAAAACAd6Cir+RKkiVLluTIkSNZt25duru7M3/+/OzevXvkQfCHDh3KlCl/6TANDQ158skns3Llylx++eWZM2dOVqxYkVWrVo3fpwAAAAAAAHgHqoaHh4cnexNvp6+vL3V1dent7U1tbe1kbwcAAAAAAJhEE9ENKv5KLgAAAAAAgLONYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIo3pmCyadOmzJ07NzU1NWlsbMzevXtPa922bdtSVVWVxYsXj+WyAAAAAAAAE6LiYLJ9+/a0tramra0t+/fvz7x589LS0pLXXnvtLde98sor+drXvpZrr712zJsFAAAAAACYCBUHk4ceeihf+cpXsnz58nziE5/I5s2b8773vS8//OEPT7lmcHAwX/rSl3Lfffflb/7mb97RhgEAAAAAAMZbRcFkYGAg+/btS3Nz81/eYMqUNDc3p7Oz85TrvvnNb2bmzJm55ZZbTus6x48fT19f36gXAAAAAADARKkomBw9ejSDg4Opr68fNV5fX5/u7u6Trnn66afz6KOPZsuWLad9nfb29tTV1Y28GhoaKtkmAAAAAABARcb00PfT9frrr+fmm2/Oli1bMmPGjNNet2bNmvT29o68Dh8+PIG7BAAAAAAASndOJZNnzJiRqVOnpqenZ9R4T09PZs2adcL83/zmN3nllVeyaNGikbGhoaH/vfA55+SFF17Ihz70oRPWVVdXp7q6upKtAQAAAAAAjFlFd5hMmzYtCxYsSEdHx8jY0NBQOjo60tTUdML8Sy65JL/+9a/T1dU18vr85z+f6667Ll1dXb5qCwAAAAAAeFeo6A6TJGltbc2yZcuycOHCXHXVVdmwYUP6+/uzfPnyJMnSpUszZ86ctLe3p6amJpdeeumo9RdccEGSnDAOAAAAAAAwWSoOJkuWLMmRI0eybt26dHd3Z/78+dm9e/fIg+APHTqUKVMm9NEoAAAAAAAA46pqeHh4eLI38Xb6+vpSV1eX3t7e1NbWTvZ2AAAAAACASTQR3cCtIAAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHhjCiabNm3K3LlzU1NTk8bGxuzdu/eUc7ds2ZJrr70206dPz/Tp09Pc3PyW8wEAAAAAAM60ioPJ9u3b09ramra2tuzfvz/z5s1LS0tLXnvttZPO37NnT2688cb84he/SGdnZxoaGnL99dfn1VdffcebBwAAAAAAGA9Vw8PDw5UsaGxszJVXXpmNGzcmSYaGhtLQ0JA777wzq1evftv1g4ODmT59ejZu3JilS5ee1jX7+vpSV1eX3t7e1NbWVrJdAAAAAADgLDMR3aCiO0wGBgayb9++NDc3/+UNpkxJc3NzOjs7T+s93njjjbz55pu58MILK9spAAAAAADABDmnkslHjx7N4OBg6uvrR43X19fnwIEDp/Ueq1atykUXXTQquvxfx48fz/Hjx0d+7uvrq2SbAAAAAAAAFRnTQ9/H6oEHHsi2bdvyxBNPpKam5pTz2tvbU1dXN/JqaGg4g7sEAAAAAABKU1EwmTFjRqZOnZqenp5R4z09PZk1a9Zbrv3e976XBx54IP/2b/+Wyy+//C3nrlmzJr29vSOvw4cPV7JNAAAAAACAilQUTKZNm5YFCxako6NjZGxoaCgdHR1pamo65brvfOc7uf/++7N79+4sXLjwba9TXV2d2traUS8AAAAAAICJUtEzTJKktbU1y5Yty8KFC3PVVVdlw4YN6e/vz/Lly5MkS5cuzZw5c9Le3p4k+fa3v51169Zl69atmTt3brq7u5Mk559/fs4///xx/CgAAAAAAABjU3EwWbJkSY4cOZJ169alu7s78+fPz+7du0ceBH/o0KFMmfKXG1e+//3vZ2BgIF/4whdGvU9bW1u+8Y1vvLPdAwAAAAAAjIOq4eHh4cnexNvp6+tLXV1dent7fT0XAAAAAAAUbiK6QUXPMAEAAAAAADgbCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4YwommzZtyty5c1NTU5PGxsbs3bv3Lef/+Mc/ziWXXJKamppcdtll2bVr15g2CwAAAAAAMBEqDibbt29Pa2tr2trasn///sybNy8tLS157bXXTjr/mWeeyY033phbbrklv/rVr7J48eIsXrw4zz333DvePAAAAAAAwHioGh4eHq5kQWNjY6688sps3LgxSTI0NJSGhobceeedWb169QnzlyxZkv7+/vzsZz8bGfvUpz6V+fPnZ/Pmzad1zb6+vtTV1aW3tze1tbWVbBcAAAAAADjLTEQ3OKeSyQMDA9m3b1/WrFkzMjZlypQ0Nzens7PzpGs6OzvT2to6aqylpSU7duw45XWOHz+e48ePj/zc29ub5H//BwAAAAAAAGX7cy+o8J6Qt1RRMDl69GgGBwdTX18/ary+vj4HDhw46Zru7u6Tzu/u7j7lddrb23PfffedMN7Q0FDJdgEAAAAAgLPY//zP/6Surm5c3quiYHKmrFmzZtRdKceOHcv/+3//L4cOHRq3Dw4wmfr6+tLQ0JDDhw/7qkHgrOBcA842zjXgbONcA842vb29ufjii3PhhReO23tWFExmzJiRqVOnpqenZ9R4T09PZs2addI1s2bNqmh+klRXV6e6uvqE8bq6Ogc6cFapra11rgFnFecacLZxrgFnG+cacLaZMmXK+L1XJZOnTZuWBQsWpKOjY2RsaGgoHR0daWpqOumapqamUfOT5KmnnjrlfAAAAAAAgDOt4q/kam1tzbJly7Jw4cJcddVV2bBhQ/r7+7N8+fIkydKlSzNnzpy0t7cnSVasWJHPfOYzefDBB3PDDTdk27ZtefbZZ/PII4+M7ycBAAAAAAAYo4qDyZIlS3LkyJGsW7cu3d3dmT9/fnbv3j3yYPdDhw6NugXm6quvztatW7N27drcfffd+chHPpIdO3bk0ksvPe1rVldXp62t7aRf0wXwXuRcA842zjXgbONcA842zjXgbDMR51rV8PDw8Li9GwAAAAAAwHvQ+D0NBQAAAAAA4D1KMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOK9a4LJpk2bMnfu3NTU1KSxsTF79+59y/k//vGPc8kll6SmpiaXXXZZdu3adYZ2CnB6KjnXtmzZkmuvvTbTp0/P9OnT09zc/LbnIMCZVunva3+2bdu2VFVVZfHixRO7QYAKVXquHTt2LHfccUdmz56d6urqfPSjH/VvUeBdpdJzbcOGDfnYxz6W8847Lw0NDVm5cmX++Mc/nqHdApzaL3/5yyxatCgXXXRRqqqqsmPHjrdds2fPnnzyk59MdXV1PvzhD+exxx6r+LrvimCyffv2tLa2pq2tLfv378+8efPS0tKS11577aTzn3nmmdx444255ZZb8qtf/SqLFy/O4sWL89xzz53hnQOcXKXn2p49e3LjjTfmF7/4RTo7O9PQ0JDrr78+r7766hneOcDJVXqu/dkrr7ySr33ta7n22mvP0E4BTk+l59rAwEA++9nP5pVXXsnjjz+eF154IVu2bMmcOXPO8M4BTq7Sc23r1q1ZvXp12tra8vzzz+fRRx/N9u3bc/fdd5/hnQOcqL+/P/PmzcumTZtOa/7LL7+cG264Idddd126urpy11135dZbb82TTz5Z0XWrhoeHh8ey4fHU2NiYK6+8Mhs3bkySDA0NpaGhIXfeeWdWr159wvwlS5akv78/P/vZz0bGPvWpT2X+/PnZvHnzGds3wKlUeq79X4ODg5k+fXo2btyYpUuXTvR2Ad7WWM61wcHB/O3f/m2+/OUv5z/+4z9y7Nix0/qrIIAzodJzbfPmzfnud7+bAwcO5Nxzzz3T2wV4W5Wea3//93+f559/Ph0dHSNj//iP/5j//M//zNNPP33G9g3wdqqqqvLEE0+85bcWrFq1Kjt37hx1U8UXv/jFHDt2LLt37z7ta036HSYDAwPZt29fmpubR8amTJmS5ubmdHZ2nnRNZ2fnqPlJ0tLScsr5AGfSWM61/+uNN97Im2++mQsvvHCitglw2sZ6rn3zm9/MzJkzc8stt5yJbQKctrGcaz/96U/T1NSUO+64I/X19bn00kuzfv36DA4OnqltA5zSWM61q6++Ovv27Rv52q6XXnopu3btyuc+97kzsmeA8TRezeCc8dzUWBw9ejSDg4Opr68fNV5fX58DBw6cdE13d/dJ53d3d0/YPgFO11jOtf9r1apVueiii0446AEmw1jOtaeffjqPPvpourq6zsAOASozlnPtpZdeys9//vN86Utfyq5du3Lw4MH83d/9Xd588820tbWdiW0DnNJYzrWbbropR48ezac//ekMDw/nT3/6U2677TZfyQW8J52qGfT19eUPf/hDzjvvvNN6n0m/wwSA0R544IFs27YtTzzxRGpqaiZ7OwAVe/3113PzzTdny5YtmTFjxmRvB2BcDA0NZebMmXnkkUeyYMGCLFmyJPfcc4+vhQbes/bs2ZP169fn4Ycfzv79+/OTn/wkO3fuzP333z/ZWwOYNJN+h8mMGTMyderU9PT0jBrv6enJrFmzTrpm1qxZFc0HOJPGcq792fe+97088MAD+fd///dcfvnlE7lNgNNW6bn2m9/8Jq+88koWLVo0MjY0NJQkOeecc/LCCy/kQx/60MRuGuAtjOX3tdmzZ+fcc8/N1KlTR8Y+/vGPp7u7OwMDA5k2bdqE7hngrYzlXLv33ntz880359Zbb02SXHbZZenv789Xv/rV3HPPPZkyxd9ZA+8dp2oGtbW1p313SfIuuMNk2rRpWbBgwagHTA0NDaWjoyNNTU0nXdPU1DRqfpI89dRTp5wPcCaN5VxLku985zu5//77s3v37ixcuPBMbBXgtFR6rl1yySX59a9/na6urpHX5z//+Vx33XXp6upKQ0PDmdw+wAnG8vvaNddck4MHD44E4CR58cUXM3v2bLEEmHRjOdfeeOONE6LIn6Pw8PDwxG0WYAKMVzOY9DtMkqS1tTXLli3LwoULc9VVV2XDhg3p7+/P8uXLkyRLly7NnDlz0t7eniRZsWJFPvOZz+TBBx/MDTfckG3btuXZZ5/NI488MpkfA2BEpefat7/97axbty5bt27N3LlzR57JdP755+f888+ftM8B8GeVnGs1NTW59NJLR62/4IILkuSEcYDJUunva7fffns2btyYFStW5M4778x//dd/Zf369fmHf/iHyfwYACMqPdcWLVqUhx56KFdccUUaGxtz8ODB3HvvvVm0aNGou+kAJsPvf//7HDx4cOTnl19+OV1dXbnwwgtz8cUXZ82aNXn11Vfzr//6r0mS2267LRs3bszXv/71fPnLX87Pf/7z/OhHP8rOnTsruu67IpgsWbIkR44cybp169Ld3Z358+dn9+7dIw9pOXTo0KjiffXVV2fr1q1Zu3Zt7r777nzkIx/Jjh07/AMceNeo9Fz7/ve/n4GBgXzhC18Y9T5tbW35xje+cSa3DnBSlZ5rAO92lZ5rDQ0NefLJJ7Ny5cpcfvnlmTNnTlasWJFVq1ZN1kcAGKXSc23t2rWpqqrK2rVr8+qrr+b9739/Fi1alG9961uT9REARjz77LO57rrrRn5ubW1NkixbtiyPPfZYfvvb3+bQoUMj//2DH/xgdu7cmZUrV+af//mf84EPfCA/+MEP0tLSUtF1q4bdYwcAAAAAABTOnwECAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHj/H6NFv63lvHuxAAAAAElFTkSuQmCC
\n
",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkwAAAFlCAYAAACp9sQiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiCElEQVR4nO3df2zX1aH/8VdBaV28rXgZBVn9srtfblHBgXbVeReTziYzLPyxhOkihOkWvV4v0rsMUKRz3lH3Q8NNwBGZi/f+QWAzkyyD4PV2I7vG5hJhTWYiepl6IWatcBdaVzfq2n7/uFmXXkD51JYq5/FIPn/0eM7nfT7+cVLy7PvzrhoeHh4OAAAAAABAwaZM9gYAAAAAAAAmm2ACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABSv4mDyy1/+MosWLcpFF12Uqqqq7Nix423X7NmzJ5/85CdTXV2dD3/4w3nsscfGsFUAAAAAAICJUXEw6e/vz7x587Jp06bTmv/yyy/nhhtuyHXXXZeurq7cddddufXWW/Pkk09WvFkAAAAAAICJUDU8PDw85sVVVXniiSeyePHiU85ZtWpVdu7cmeeee25k7Itf/GKOHTuW3bt3j/XSAAAAAAAA4+acib5AZ2dnmpubR421tLTkrrvuOuWa48eP5/jx4yM/Dw0N5Xe/+13++q//OlVVVRO1VQAAAAAA4D1geHg4r7/+ei666KJMmTI+j2uf8GDS3d2d+vr6UWP19fXp6+vLH/7wh5x33nknrGlvb89999030VsDAAAAAADeww4fPpwPfOAD4/JeEx5MxmLNmjVpbW0d+bm3tzcXX3xxDh8+nNra2kncGQAAAAAAMNn6+vrS0NCQv/qrvxq395zwYDJr1qz09PSMGuvp6Ultbe1J7y5Jkurq6lRXV58wXltbK5gAAAAAAABJMq6P8RifL/Z6C01NTeno6Bg19tRTT6WpqWmiLw0AAAAAAHBaKg4mv//979PV1ZWurq4kycsvv5yurq4cOnQoyf9+ndbSpUtH5t9222156aWX8vWvfz0HDhzIww8/nB/96EdZuXLl+HwCAAAAAACAd6jiYPLss8/miiuuyBVXXJEkaW1tzRVXXJF169YlSX7729+OxJMk+eAHP5idO3fmqaeeyrx58/Lggw/mBz/4QVpaWsbpIwAAAAAAALwzVcPDw8OTvYm309fXl7q6uvT29nqGCQAAAAAAFG4iusGEP8MEAAAAAADg3U4wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRtTMNm0aVPmzp2bmpqaNDY2Zu/evW85f8OGDfnYxz6W8847Lw0NDVm5cmX++Mc/jmnDAAAAAAAA463iYLJ9+/a0tramra0t+/fvz7x589LS0pLXXnvtpPO3bt2a1atXp62tLc8//3weffTRbN++PXffffc73jwAAAAAAMB4qDiYPPTQQ/nKV76S5cuX5xOf+EQ2b96c973vffnhD3940vnPPPNMrrnmmtx0002ZO3durr/++tx4441ve1cKAAAAAADAmVJRMBkYGMi+ffvS3Nz8lzeYMiXNzc3p7Ow86Zqrr746+/btGwkkL730Unbt2pXPfe5zp7zO8ePH09fXN+oFAAAAAAAwUc6pZPLRo0czODiY+vr6UeP19fU5cODASdfcdNNNOXr0aD796U9neHg4f/rTn3Lbbbe95Vdytbe357777qtkawAAAAAAAGM2poe+V2LPnj1Zv359Hn744ezfvz8/+clPsnPnztx///2nXLNmzZr09vaOvA4fPjzR2wQAAAAAAApW0R0mM2bMyNSpU9PT0zNqvKenJ7NmzTrpmnvvvTc333xzbr311iTJZZddlv7+/nz1q1/NPffckylTTmw21dXVqa6urmRrAAAAAAAAY1bRHSbTpk3LggUL0tHRMTI2NDSUjo6ONDU1nXTNG2+8cUIUmTp1apJkeHi40v0CAAAAAACMu4ruMEmS1tbWLFu2LAsXLsxVV12VDRs2pL+/P8uXL0+SLF26NHPmzEl7e3uSZNGiRXnooYdyxRVXpLGxMQcPHsy9996bRYsWjYQTAAAAAACAyVRxMFmyZEmOHDmSdevWpbu7O/Pnz8/u3btHHgR/6NChUXeUrF27NlVVVVm7dm1effXVvP/978+iRYvyrW99a/w+BQAAAAAAwDtQNfwe+F6svr6+1NXVpbe3N7W1tZO9HQAAAAAAYBJNRDeo6BkmAAAAAAAAZyPBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKN6YgsmmTZsyd+7c1NTUpLGxMXv37n3L+ceOHcsdd9yR2bNnp7q6Oh/96Eeza9euMW0YAAAAAABgvJ1T6YLt27entbU1mzdvTmNjYzZs2JCWlpa88MILmTlz5gnzBwYG8tnPfjYzZ87M448/njlz5uS///u/c8EFF4zH/gEAAAAAAN6xquHh4eFKFjQ2NubKK6/Mxo0bkyRDQ0NpaGjInXfemdWrV58wf/Pmzfnud7+bAwcO5Nxzzx3TJvv6+lJXV5fe3t7U1taO6T0AAAAAAICzw0R0g4q+kmtgYCD79u1Lc3PzX95gypQ0Nzens7PzpGt++tOfpqmpKXfccUfq6+tz6aWXZv369RkcHDzldY4fP56+vr5RLwAAAAAAgIlSUTA5evRoBgcHU19fP2q8vr4+3d3dJ13z0ksv5fHHH8/g4GB27dqVe++9Nw8++GD+6Z/+6ZTXaW9vT11d3ciroaGhkm0CAAAAAABUZEwPfa/E0NBQZs6cmUceeSQLFizIkiVLcs8992Tz5s2nXLNmzZr09vaOvA4fPjzR2wQAAAAAAApW0UPfZ8yYkalTp6anp2fUeE9PT2bNmnXSNbNnz865556bqVOnjox9/OMfT3d3dwYGBjJt2rQT1lRXV6e6urqSrQEAAAAAAIxZRXeYTJs2LQsWLEhHR8fI2NDQUDo6OtLU1HTSNddcc00OHjyYoaGhkbEXX3wxs2fPPmksAQAAAAAAONMq/kqu1tbWbNmyJf/yL/+S559/Prfffnv6+/uzfPnyJMnSpUuzZs2akfm33357fve732XFihV58cUXs3Pnzqxfvz533HHH+H0KAAAAAACAd6Cir+RKkiVLluTIkSNZt25duru7M3/+/OzevXvkQfCHDh3KlCl/6TANDQ158skns3Llylx++eWZM2dOVqxYkVWrVo3fpwAAAAAAAHgHqoaHh4cnexNvp6+vL3V1dent7U1tbe1kbwcAAAAAAJhEE9ENKv5KLgAAAAAAgLONYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIo3pmCyadOmzJ07NzU1NWlsbMzevXtPa922bdtSVVWVxYsXj+WyAAAAAAAAE6LiYLJ9+/a0tramra0t+/fvz7x589LS0pLXXnvtLde98sor+drXvpZrr712zJsFAAAAAACYCBUHk4ceeihf+cpXsnz58nziE5/I5s2b8773vS8//OEPT7lmcHAwX/rSl3Lfffflb/7mb97RhgEAAAAAAMZbRcFkYGAg+/btS3Nz81/eYMqUNDc3p7Oz85TrvvnNb2bmzJm55ZZbTus6x48fT19f36gXAAAAAADARKkomBw9ejSDg4Opr68fNV5fX5/u7u6Trnn66afz6KOPZsuWLad9nfb29tTV1Y28GhoaKtkmAAAAAABARcb00PfT9frrr+fmm2/Oli1bMmPGjNNet2bNmvT29o68Dh8+PIG7BAAAAAAASndOJZNnzJiRqVOnpqenZ9R4T09PZs2adcL83/zmN3nllVeyaNGikbGhoaH/vfA55+SFF17Ihz70oRPWVVdXp7q6upKtAQAAAAAAjFlFd5hMmzYtCxYsSEdHx8jY0NBQOjo60tTUdML8Sy65JL/+9a/T1dU18vr85z+f6667Ll1dXb5qCwAAAAAAeFeo6A6TJGltbc2yZcuycOHCXHXVVdmwYUP6+/uzfPnyJMnSpUszZ86ctLe3p6amJpdeeumo9RdccEGSnDAOAAAAAAAwWSoOJkuWLMmRI0eybt26dHd3Z/78+dm9e/fIg+APHTqUKVMm9NEoAAAAAAAA46pqeHh4eLI38Xb6+vpSV1eX3t7e1NbWTvZ2AAAAAACASTQR3cCtIAAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHhjCiabNm3K3LlzU1NTk8bGxuzdu/eUc7ds2ZJrr70206dPz/Tp09Pc3PyW8wEAAAAAAM60ioPJ9u3b09ramra2tuzfvz/z5s1LS0tLXnvttZPO37NnT2688cb84he/SGdnZxoaGnL99dfn1VdffcebBwAAAAAAGA9Vw8PDw5UsaGxszJVXXpmNGzcmSYaGhtLQ0JA777wzq1evftv1g4ODmT59ejZu3JilS5ee1jX7+vpSV1eX3t7e1NbWVrJdAAAAAADgLDMR3aCiO0wGBgayb9++NDc3/+UNpkxJc3NzOjs7T+s93njjjbz55pu58MILK9spAAAAAADABDmnkslHjx7N4OBg6uvrR43X19fnwIEDp/Ueq1atykUXXTQquvxfx48fz/Hjx0d+7uvrq2SbAAAAAAAAFRnTQ9/H6oEHHsi2bdvyxBNPpKam5pTz2tvbU1dXN/JqaGg4g7sEAAAAAABKU1EwmTFjRqZOnZqenp5R4z09PZk1a9Zbrv3e976XBx54IP/2b/+Wyy+//C3nrlmzJr29vSOvw4cPV7JNAAAAAACAilQUTKZNm5YFCxako6NjZGxoaCgdHR1pamo65brvfOc7uf/++7N79+4sXLjwba9TXV2d2traUS8AAAAAAICJUtEzTJKktbU1y5Yty8KFC3PVVVdlw4YN6e/vz/Lly5MkS5cuzZw5c9Le3p4k+fa3v51169Zl69atmTt3brq7u5Mk559/fs4///xx/CgAAAAAAABjU3EwWbJkSY4cOZJ169alu7s78+fPz+7du0ceBH/o0KFMmfKXG1e+//3vZ2BgIF/4whdGvU9bW1u+8Y1vvLPdAwAAAAAAjIOq4eHh4cnexNvp6+tLXV1dent7fT0XAAAAAAAUbiK6QUXPMAEAAAAAADgbCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHiCCQAAAAAAUDzBBAAAAAAAKJ5gAgAAAAAAFE8wAQAAAAAAiieYAAAAAAAAxRNMAAAAAACA4gkmAAAAAABA8QQTAAAAAACgeIIJAAAAAABQPMEEAAAAAAAonmACAAAAAAAUTzABAAAAAACKJ5gAAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4YwommzZtyty5c1NTU5PGxsbs3bv3Lef/+Mc/ziWXXJKamppcdtll2bVr15g2CwAAAAAAMBEqDibbt29Pa2tr2trasn///sybNy8tLS157bXXTjr/mWeeyY033phbbrklv/rVr7J48eIsXrw4zz333DvePAAAAAAAwHioGh4eHq5kQWNjY6688sps3LgxSTI0NJSGhobceeedWb169QnzlyxZkv7+/vzsZz8bGfvUpz6V+fPnZ/Pmzad1zb6+vtTV1aW3tze1tbWVbBcAAAAAADjLTEQ3OKeSyQMDA9m3b1/WrFkzMjZlypQ0Nzens7PzpGs6OzvT2to6aqylpSU7duw45XWOHz+e48ePj/zc29ub5H//BwAAAAAAAGX7cy+o8J6Qt1RRMDl69GgGBwdTX18/ary+vj4HDhw46Zru7u6Tzu/u7j7lddrb23PfffedMN7Q0FDJdgEAAAAAgLPY//zP/6Surm5c3quiYHKmrFmzZtRdKceOHcv/+3//L4cOHRq3Dw4wmfr6+tLQ0JDDhw/7qkHgrOBcA842zjXgbONcA842vb29ufjii3PhhReO23tWFExmzJiRqVOnpqenZ9R4T09PZs2addI1s2bNqmh+klRXV6e6uvqE8bq6Ogc6cFapra11rgFnFecacLZxrgFnG+cacLaZMmXK+L1XJZOnTZuWBQsWpKOjY2RsaGgoHR0daWpqOumapqamUfOT5KmnnjrlfAAAAAAAgDOt4q/kam1tzbJly7Jw4cJcddVV2bBhQ/r7+7N8+fIkydKlSzNnzpy0t7cnSVasWJHPfOYzefDBB3PDDTdk27ZtefbZZ/PII4+M7ycBAAAAAAAYo4qDyZIlS3LkyJGsW7cu3d3dmT9/fnbv3j3yYPdDhw6NugXm6quvztatW7N27drcfffd+chHPpIdO3bk0ksvPe1rVldXp62t7aRf0wXwXuRcA842zjXgbONcA842zjXgbDMR51rV8PDw8Li9GwAAAAAAwHvQ+D0NBQAAAAAA4D1KMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOK9a4LJpk2bMnfu3NTU1KSxsTF79+59y/k//vGPc8kll6SmpiaXXXZZdu3adYZ2CnB6KjnXtmzZkmuvvTbTp0/P9OnT09zc/LbnIMCZVunva3+2bdu2VFVVZfHixRO7QYAKVXquHTt2LHfccUdmz56d6urqfPSjH/VvUeBdpdJzbcOGDfnYxz6W8847Lw0NDVm5cmX++Mc/nqHdApzaL3/5yyxatCgXXXRRqqqqsmPHjrdds2fPnnzyk59MdXV1PvzhD+exxx6r+LrvimCyffv2tLa2pq2tLfv378+8efPS0tKS11577aTzn3nmmdx444255ZZb8qtf/SqLFy/O4sWL89xzz53hnQOcXKXn2p49e3LjjTfmF7/4RTo7O9PQ0JDrr78+r7766hneOcDJVXqu/dkrr7ySr33ta7n22mvP0E4BTk+l59rAwEA++9nP5pVXXsnjjz+eF154IVu2bMmcOXPO8M4BTq7Sc23r1q1ZvXp12tra8vzzz+fRRx/N9u3bc/fdd5/hnQOcqL+/P/PmzcumTZtOa/7LL7+cG264Idddd126urpy11135dZbb82TTz5Z0XWrhoeHh8ey4fHU2NiYK6+8Mhs3bkySDA0NpaGhIXfeeWdWr159wvwlS5akv78/P/vZz0bGPvWpT2X+/PnZvHnzGds3wKlUeq79X4ODg5k+fXo2btyYpUuXTvR2Ad7WWM61wcHB/O3f/m2+/OUv5z/+4z9y7Nix0/qrIIAzodJzbfPmzfnud7+bAwcO5Nxzzz3T2wV4W5Wea3//93+f559/Ph0dHSNj//iP/5j//M//zNNPP33G9g3wdqqqqvLEE0+85bcWrFq1Kjt37hx1U8UXv/jFHDt2LLt37z7ta036HSYDAwPZt29fmpubR8amTJmS5ubmdHZ2nnRNZ2fnqPlJ0tLScsr5AGfSWM61/+uNN97Im2++mQsvvHCitglw2sZ6rn3zm9/MzJkzc8stt5yJbQKctrGcaz/96U/T1NSUO+64I/X19bn00kuzfv36DA4OnqltA5zSWM61q6++Ovv27Rv52q6XXnopu3btyuc+97kzsmeA8TRezeCc8dzUWBw9ejSDg4Opr68fNV5fX58DBw6cdE13d/dJ53d3d0/YPgFO11jOtf9r1apVueiii0446AEmw1jOtaeffjqPPvpourq6zsAOASozlnPtpZdeys9//vN86Utfyq5du3Lw4MH83d/9Xd588820tbWdiW0DnNJYzrWbbropR48ezac//ekMDw/nT3/6U2677TZfyQW8J52qGfT19eUPf/hDzjvvvNN6n0m/wwSA0R544IFs27YtTzzxRGpqaiZ7OwAVe/3113PzzTdny5YtmTFjxmRvB2BcDA0NZebMmXnkkUeyYMGCLFmyJPfcc4+vhQbes/bs2ZP169fn4Ycfzv79+/OTn/wkO3fuzP333z/ZWwOYNJN+h8mMGTMyderU9PT0jBrv6enJrFmzTrpm1qxZFc0HOJPGcq792fe+97088MAD+fd///dcfvnlE7lNgNNW6bn2m9/8Jq+88koWLVo0MjY0NJQkOeecc/LCCy/kQx/60MRuGuAtjOX3tdmzZ+fcc8/N1KlTR8Y+/vGPp7u7OwMDA5k2bdqE7hngrYzlXLv33ntz880359Zbb02SXHbZZenv789Xv/rV3HPPPZkyxd9ZA+8dp2oGtbW1p313SfIuuMNk2rRpWbBgwagHTA0NDaWjoyNNTU0nXdPU1DRqfpI89dRTp5wPcCaN5VxLku985zu5//77s3v37ixcuPBMbBXgtFR6rl1yySX59a9/na6urpHX5z//+Vx33XXp6upKQ0PDmdw+wAnG8vvaNddck4MHD44E4CR58cUXM3v2bLEEmHRjOdfeeOONE6LIn6Pw8PDwxG0WYAKMVzOY9DtMkqS1tTXLli3LwoULc9VVV2XDhg3p7+/P8uXLkyRLly7NnDlz0t7eniRZsWJFPvOZz+TBBx/MDTfckG3btuXZZ5/NI488MpkfA2BEpefat7/97axbty5bt27N3LlzR57JdP755+f888+ftM8B8GeVnGs1NTW59NJLR62/4IILkuSEcYDJUunva7fffns2btyYFStW5M4778x//dd/Zf369fmHf/iHyfwYACMqPdcWLVqUhx56KFdccUUaGxtz8ODB3HvvvVm0aNGou+kAJsPvf//7HDx4cOTnl19+OV1dXbnwwgtz8cUXZ82aNXn11Vfzr//6r0mS2267LRs3bszXv/71fPnLX87Pf/7z/OhHP8rOnTsruu67IpgsWbIkR44cybp169Ld3Z358+dn9+7dIw9pOXTo0KjiffXVV2fr1q1Zu3Zt7r777nzkIx/Jjh07/AMceNeo9Fz7/ve/n4GBgXzhC18Y9T5tbW35xje+cSa3DnBSlZ5rAO92lZ5rDQ0NefLJJ7Ny5cpcfvnlmTNnTlasWJFVq1ZN1kcAGKXSc23t2rWpqqrK2rVr8+qrr+b9739/Fi1alG9961uT9REARjz77LO57rrrRn5ubW1NkixbtiyPPfZYfvvb3+bQoUMj//2DH/xgdu7cmZUrV+af//mf84EPfCA/+MEP0tLSUtF1q4bdYwcAAAAAABTOnwECAAAAAADFE0wAAAAAAIDiCSYAAAAAAEDxBBMAAAAAAKB4ggkAAAAAAFA8wQQAAAAAACieYAIAAAAAABRPMAEAAAAAAIonmAAAAAAAAMUTTAAAAAAAgOIJJgAAAAAAQPEEEwAAAAAAoHj/H6NFv63lvHuxAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 2000x400 with 1 Axes>"
]
...
...
@@ -123,7 +123,7 @@
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEYCAYAAACTCF21AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbeklEQVR4nO3db2zdVf3A8U/b0VuItAzn2m0WJyigAhturBYkBFNpApnugaEOsi0LiMgkQKOy8WcV0XUqkiVSWJggPsFNiRDCliJWFqPULG5rAnEbmXNuIbbbVNpZtN3a7++Bof7qOtjt+ofuvF7JfdDDOfd7LjkM3nxv7y3IsiwLAACARBWO9wYAAADGkygCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkpZ3FP3mN7+J+fPnx/Tp06OgoCCee+65d12zefPm+OQnPxm5XC4+8pGPxFNPPTWMrQIAAIy8vKOou7s7Zs2aFU1NTSc0/89//nNcd911cfXVV0dbW1vceeedcfPNN8eLL76Y92YBAABGWkGWZdmwFxcUxLPPPhsLFiw47py77747Nm7cGK+99trA2Be/+MV48803o7m5ebiXBgAAGBGTRvsCra2tUVNTM2istrY27rzzzuOu6enpiZ6enoGf+/v74+9//3u8//3vj4KCgtHaKgAA8B6XZVkcPnw4pk+fHoWFI/MRCaMeRe3t7VFeXj5orLy8PLq6uuJf//pXnH766cesaWxsjAceeGC0twYAAExQ+/fvjw9+8IMj8lyjHkXDsWLFiqivrx/4ubOzM84555zYv39/lJaWjuPOAACA8dTV1RWVlZVx5plnjthzjnoUVVRUREdHx6Cxjo6OKC0tHfIuUURELpeLXC53zHhpaakoAgAARvTXakb9e4qqq6ujpaVl0NhLL70U1dXVo31pAACAd5V3FP3zn/+Mtra2aGtri4j/fOR2W1tb7Nu3LyL+89a3xYsXD8y/9dZbY8+ePfGNb3wjdu7cGY8++mj87Gc/i7vuumtkXgEAAMBJyDuK/vCHP8Sll14al156aURE1NfXx6WXXhorV66MiIi//vWvA4EUEfHhD384Nm7cGC+99FLMmjUrfvCDH8SPfvSjqK2tHaGXAAAAMHwn9T1FY6WrqyvKysqis7PT7xQBAEDCRqMNRv13igAAAN7LRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkbVhR1NTUFDNnzoySkpKoqqqKLVu2vOP8NWvWxAUXXBCnn356VFZWxl133RX//ve/h7VhAACAkZR3FG3YsCHq6+ujoaEhtm3bFrNmzYra2to4cODAkPOffvrpWL58eTQ0NMSOHTviiSeeiA0bNsQ999xz0psHAAA4WXlH0cMPPxxf+tKXYunSpfHxj3881q5dG2eccUY8+eSTQ85/5ZVX4oorrogbbrghZs6cGddcc00sXLjwXe8uAQAAjIW8oqi3tze2bt0aNTU1/32CwsKoqamJ1tbWIddcfvnlsXXr1oEI2rNnT2zatCmuvfba416np6cnurq6Bj0AAABGw6R8Jh86dCj6+vqivLx80Hh5eXns3LlzyDU33HBDHDp0KD796U9HlmVx9OjRuPXWW9/x7XONjY3xwAMP5LM1AACAYRn1T5/bvHlzrFq1Kh599NHYtm1b/OIXv4iNGzfGgw8+eNw1K1asiM7OzoHH/v37R3ubAABAovK6UzRlypQoKiqKjo6OQeMdHR1RUVEx5Jr7778/Fi1aFDfffHNERFx88cXR3d0dt9xyS9x7771RWHhsl+VyucjlcvlsDQAAYFjyulNUXFwcc+bMiZaWloGx/v7+aGlpierq6iHXvPXWW8eET1FRUUREZFmW734BAABGVF53iiIi6uvrY8mSJTF37tyYN29erFmzJrq7u2Pp0qUREbF48eKYMWNGNDY2RkTE/Pnz4+GHH45LL700qqqqYvfu3XH//ffH/PnzB+IIAABgvOQdRXV1dXHw4MFYuXJltLe3x+zZs6O5uXngwxf27ds36M7QfffdFwUFBXHffffFG2+8ER/4wAdi/vz58Z3vfGfkXgUAAMAwFWQT4D1sXV1dUVZWFp2dnVFaWjre2wEAAMbJaLTBqH/6HAAAwHuZKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkDSuKmpqaYubMmVFSUhJVVVWxZcuWd5z/5ptvxrJly2LatGmRy+Xi/PPPj02bNg1rwwAAACNpUr4LNmzYEPX19bF27dqoqqqKNWvWRG1tbezatSumTp16zPze3t747Gc/G1OnTo1nnnkmZsyYEX/5y1/irLPOGon9AwAAnJSCLMuyfBZUVVXFZZddFo888khERPT390dlZWXcfvvtsXz58mPmr127Nr7//e/Hzp0747TTThvWJru6uqKsrCw6OzujtLR0WM8BAABMfKPRBnm9fa63tze2bt0aNTU1/32CwsKoqamJ1tbWIdc8//zzUV1dHcuWLYvy8vK46KKLYtWqVdHX13dyOwcAABgBeb197tChQ9HX1xfl5eWDxsvLy2Pnzp1DrtmzZ0/8+te/jhtvvDE2bdoUu3fvjttuuy2OHDkSDQ0NQ67p6emJnp6egZ+7urry2SYAAMAJG/VPn+vv74+pU6fG448/HnPmzIm6urq49957Y+3atcdd09jYGGVlZQOPysrK0d4mAACQqLyiaMqUKVFUVBQdHR2Dxjs6OqKiomLINdOmTYvzzz8/ioqKBsY+9rGPRXt7e/T29g65ZsWKFdHZ2Tnw2L9/fz7bBAAAOGF5RVFxcXHMmTMnWlpaBsb6+/ujpaUlqqurh1xzxRVXxO7du6O/v39g7PXXX49p06ZFcXHxkGtyuVyUlpYOegAAAIyGvN8+V19fH+vWrYuf/OQnsWPHjvjKV74S3d3dsXTp0oiIWLx4caxYsWJg/le+8pX4+9//HnfccUe8/vrrsXHjxli1alUsW7Zs5F4FAADAMOX9PUV1dXVx8ODBWLlyZbS3t8fs2bOjubl54MMX9u3bF4WF/22tysrKePHFF+Ouu+6KSy65JGbMmBF33HFH3H333SP3KgAAAIYp7+8pGg++pwgAAIh4D3xPEQAAwKlGFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJC0YUVRU1NTzJw5M0pKSqKqqiq2bNlyQuvWr18fBQUFsWDBguFcFgAAYMTlHUUbNmyI+vr6aGhoiG3btsWsWbOitrY2Dhw48I7r9u7dG1/72tfiyiuvHPZmAQAARlreUfTwww/Hl770pVi6dGl8/OMfj7Vr18YZZ5wRTz755HHX9PX1xY033hgPPPBAnHvuuSe1YQAAgJGUVxT19vbG1q1bo6am5r9PUFgYNTU10draetx13/rWt2Lq1Klx0003ndB1enp6oqura9ADAABgNOQVRYcOHYq+vr4oLy8fNF5eXh7t7e1Drvntb38bTzzxRKxbt+6Er9PY2BhlZWUDj8rKyny2CQAAcMJG9dPnDh8+HIsWLYp169bFlClTTnjdihUrorOzc+Cxf//+UdwlAACQskn5TJ4yZUoUFRVFR0fHoPGOjo6oqKg4Zv6f/vSn2Lt3b8yfP39grL+//z8XnjQpdu3aFeedd94x63K5XORyuXy2BgAAMCx53SkqLi6OOXPmREtLy8BYf39/tLS0RHV19THzL7zwwnj11Vejra1t4PG5z30urr766mhra/O2OAAAYNzldacoIqK+vj6WLFkSc+fOjXnz5sWaNWuiu7s7li5dGhERixcvjhkzZkRjY2OUlJTERRddNGj9WWedFRFxzDgAAMB4yDuK6urq4uDBg7Fy5cpob2+P2bNnR3Nz88CHL+zbty8KC0f1V5UAAABGTEGWZdl4b+LddHV1RVlZWXR2dkZpael4bwcAABgno9EGbukAAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQtGFFUVNTU8ycOTNKSkqiqqoqtmzZcty569atiyuvvDImT54ckydPjpqamnecDwAAMJbyjqINGzZEfX19NDQ0xLZt22LWrFlRW1sbBw4cGHL+5s2bY+HChfHyyy9Ha2trVFZWxjXXXBNvvPHGSW8eAADgZBVkWZbls6Cqqiouu+yyeOSRRyIior+/PyorK+P222+P5cuXv+v6vr6+mDx5cjzyyCOxePHiE7pmV1dXlJWVRWdnZ5SWluazXQAA4BQyGm2Q152i3t7e2Lp1a9TU1Pz3CQoLo6amJlpbW0/oOd566604cuRInH322ced09PTE11dXYMeAAAAoyGvKDp06FD09fVFeXn5oPHy8vJob28/oee4++67Y/r06YPC6n81NjZGWVnZwKOysjKfbQIAAJywMf30udWrV8f69evj2WefjZKSkuPOW7FiRXR2dg489u/fP4a7BAAAUjIpn8lTpkyJoqKi6OjoGDTe0dERFRUV77j2oYceitWrV8evfvWruOSSS95xbi6Xi1wul8/WAAAAhiWvO0XFxcUxZ86caGlpGRjr7++PlpaWqK6uPu66733ve/Hggw9Gc3NzzJ07d/i7BQAAGGF53SmKiKivr48lS5bE3LlzY968ebFmzZro7u6OpUuXRkTE4sWLY8aMGdHY2BgREd/97ndj5cqV8fTTT8fMmTMHfvfofe97X7zvfe8bwZcCAACQv7yjqK6uLg4ePBgrV66M9vb2mD17djQ3Nw98+MK+ffuisPC/N6Aee+yx6O3tjS984QuDnqehoSG++c1vntzuAQAATlLe31M0HnxPEQAAEPEe+J4iAACAU40oAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKQNK4qamppi5syZUVJSElVVVbFly5Z3nP/zn/88LrzwwigpKYmLL744Nm3aNKzNAgAAjLS8o2jDhg1RX18fDQ0NsW3btpg1a1bU1tbGgQMHhpz/yiuvxMKFC+Omm26K7du3x4IFC2LBggXx2muvnfTmAQAATlZBlmVZPguqqqrisssui0ceeSQiIvr7+6OysjJuv/32WL58+THz6+rqoru7O1544YWBsU996lMxe/bsWLt27Qlds6urK8rKyqKzszNKS0vz2S4AAHAKGY02mJTP5N7e3ti6dWusWLFiYKywsDBqamqitbV1yDWtra1RX18/aKy2tjaee+65416np6cnenp6Bn7u7OyMiP/8DQAAANL1dhPkeW/nHeUVRYcOHYq+vr4oLy8fNF5eXh47d+4cck17e/uQ89vb2497ncbGxnjggQeOGa+srMxnuwAAwCnqb3/7W5SVlY3Ic+UVRWNlxYoVg+4uvfnmm/GhD30o9u3bN2IvHIbS1dUVlZWVsX//fm/VZFQ5a4wVZ42x4qwxVjo7O+Occ86Js88+e8SeM68omjJlShQVFUVHR8eg8Y6OjqioqBhyTUVFRV7zIyJyuVzkcrljxsvKyvxDxpgoLS111hgTzhpjxVljrDhrjJXCwpH7dqG8nqm4uDjmzJkTLS0tA2P9/f3R0tIS1dXVQ66prq4eND8i4qWXXjrufAAAgLGU99vn6uvrY8mSJTF37tyYN29erFmzJrq7u2Pp0qUREbF48eKYMWNGNDY2RkTEHXfcEVdddVX84Ac/iOuuuy7Wr18ff/jDH+Lxxx8f2VcCAAAwDHlHUV1dXRw8eDBWrlwZ7e3tMXv27Ghubh74MIV9+/YNupV1+eWXx9NPPx333Xdf3HPPPfHRj340nnvuubjoootO+Jq5XC4aGhqGfEsdjCRnjbHirDFWnDXGirPGWBmNs5b39xQBAACcSkbut5MAAAAmIFEEAAAkTRQBAABJE0UAAEDS3jNR1NTUFDNnzoySkpKoqqqKLVu2vOP8n//853HhhRdGSUlJXHzxxbFp06Yx2ikTXT5nbd26dXHllVfG5MmTY/LkyVFTU/OuZxPelu+fa29bv359FBQUxIIFC0Z3g5wy8j1rb775ZixbtiymTZsWuVwuzj//fP8e5YTke9bWrFkTF1xwQZx++ulRWVkZd911V/z73/8eo90yEf3mN7+J+fPnx/Tp06OgoCCee+65d12zefPm+OQnPxm5XC4+8pGPxFNPPZX3dd8TUbRhw4aor6+PhoaG2LZtW8yaNStqa2vjwIEDQ85/5ZVXYuHChXHTTTfF9u3bY8GCBbFgwYJ47bXXxnjnTDT5nrXNmzfHwoUL4+WXX47W1taorKyMa665Jt54440x3jkTTb5n7W179+6Nr33ta3HllVeO0U6Z6PI9a729vfHZz3429u7dG88880zs2rUr1q1bFzNmzBjjnTPR5HvWnn766Vi+fHk0NDTEjh074oknnogNGzbEPffcM8Y7ZyLp7u6OWbNmRVNT0wnN//Of/xzXXXddXH311dHW1hZ33nln3HzzzfHiiy/md+HsPWDevHnZsmXLBn7u6+vLpk+fnjU2Ng45//rrr8+uu+66QWNVVVXZl7/85VHdJxNfvmftfx09ejQ788wzs5/85CejtUVOEcM5a0ePHs0uv/zy7Ec/+lG2ZMmS7POf//wY7JSJLt+z9thjj2Xnnntu1tvbO1Zb5BSR71lbtmxZ9pnPfGbQWH19fXbFFVeM6j45dURE9uyzz77jnG984xvZJz7xiUFjdXV1WW1tbV7XGvc7Rb29vbF169aoqakZGCssLIyamppobW0dck1ra+ug+RERtbW1x50PEcM7a//rrbfeiiNHjsTZZ589WtvkFDDcs/atb30rpk6dGjfddNNYbJNTwHDO2vPPPx/V1dWxbNmyKC8vj4suuihWrVoVfX19Y7VtJqDhnLXLL788tm7dOvAWuz179sSmTZvi2muvHZM9k4aR6oJJI7mp4Th06FD09fVFeXn5oPHy8vLYuXPnkGva29uHnN/e3j5q+2TiG85Z+1933313TJ8+/Zh/+OD/G85Z++1vfxtPPPFEtLW1jcEOOVUM56zt2bMnfv3rX8eNN94YmzZtit27d8dtt90WR44ciYaGhrHYNhPQcM7aDTfcEIcOHYpPf/rTkWVZHD16NG699VZvn2NEHa8Lurq64l//+lecfvrpJ/Q8436nCCaK1atXx/r16+PZZ5+NkpKS8d4Op5DDhw/HokWLYt26dTFlypTx3g6nuP7+/pg6dWo8/vjjMWfOnKirq4t777031q5dO95b4xSzefPmWLVqVTz66KOxbdu2+MUvfhEbN26MBx98cLy3BscY9ztFU6ZMiaKioujo6Bg03tHRERUVFUOuqaioyGs+RAzvrL3toYceitWrV8evfvWruOSSS0Zzm5wC8j1rf/rTn2Lv3r0xf/78gbH+/v6IiJg0aVLs2rUrzjvvvNHdNBPScP5cmzZtWpx22mlRVFQ0MPaxj30s2tvbo7e3N4qLi0d1z0xMwzlr999/fyxatChuvvnmiIi4+OKLo7u7O2655Za49957o7DQ/5vn5B2vC0pLS0/4LlHEe+BOUXFxccyZMydaWloGxvr7+6OlpSWqq6uHXFNdXT1ofkTESy+9dNz5EDG8sxYR8b3vfS8efPDBaG5ujrlz547FVpng8j1rF154Ybz66qvR1tY28Pjc5z438Ek6lZWVY7l9JpDh/Ll2xRVXxO7duwfCOyLi9ddfj2nTpgkijms4Z+2tt946JnzejvH//A49nLwR64L8PgNidKxfvz7L5XLZU089lf3xj3/Mbrnlluyss87K2tvbsyzLskWLFmXLly8fmP+73/0umzRpUvbQQw9lO3bsyBoaGrLTTjste/XVV8frJTBB5HvWVq9enRUXF2fPPPNM9te//nXgcfjw4fF6CUwQ+Z61/+XT5zhR+Z61ffv2ZWeeeWb21a9+Ndu1a1f2wgsvZFOnTs2+/e1vj9dLYILI96w1NDRkZ555ZvbTn/4027NnT/bLX/4yO++887Lrr79+vF4CE8Dhw4ez7du3Z9u3b88iInv44Yez7du3Z3/5y1+yLMuy5cuXZ4sWLRqYv2fPnuyMM87Ivv71r2c7duzImpqasqKioqy5uTmv674noijLsuyHP/xhds4552TFxcXZvHnzst///vcDf+2qq67KlixZMmj+z372s+z888/PiouLs0984hPZxo0bx3jHTFT5nLUPfehDWUQc82hoaBj7jTPh5Pvn2v8nishHvmftlVdeyaqqqrJcLpede+652Xe+853s6NGjY7xrJqJ8ztqRI0eyb37zm9l5552XlZSUZJWVldltt92W/eMf/xj7jTNhvPzyy0P+t9fbZ2vJkiXZVVdddcya2bNnZ8XFxdm5556b/fjHP877ugVZ5v4lAACQrnH/nSIAAIDxJIoAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABI2v8BdLb54SDSHRYAAAAASUVORK5CYII=
\n
",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEYCAYAAACTCF21AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbeklEQVR4nO3db2zdVf3A8U/b0VuItAzn2m0WJyigAhturBYkBFNpApnugaEOsi0LiMgkQKOy8WcV0XUqkiVSWJggPsFNiRDCliJWFqPULG5rAnEbmXNuIbbbVNpZtN3a7++Bof7qOtjt+ofuvF7JfdDDOfd7LjkM3nxv7y3IsiwLAACARBWO9wYAAADGkygCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkpZ3FP3mN7+J+fPnx/Tp06OgoCCee+65d12zefPm+OQnPxm5XC4+8pGPxFNPPTWMrQIAAIy8vKOou7s7Zs2aFU1NTSc0/89//nNcd911cfXVV0dbW1vceeedcfPNN8eLL76Y92YBAABGWkGWZdmwFxcUxLPPPhsLFiw47py77747Nm7cGK+99trA2Be/+MV48803o7m5ebiXBgAAGBGTRvsCra2tUVNTM2istrY27rzzzuOu6enpiZ6enoGf+/v74+9//3u8//3vj4KCgtHaKgAA8B6XZVkcPnw4pk+fHoWFI/MRCaMeRe3t7VFeXj5orLy8PLq6uuJf//pXnH766cesaWxsjAceeGC0twYAAExQ+/fvjw9+8IMj8lyjHkXDsWLFiqivrx/4ubOzM84555zYv39/lJaWjuPOAACA8dTV1RWVlZVx5plnjthzjnoUVVRUREdHx6Cxjo6OKC0tHfIuUURELpeLXC53zHhpaakoAgAARvTXakb9e4qqq6ujpaVl0NhLL70U1dXVo31pAACAd5V3FP3zn/+Mtra2aGtri4j/fOR2W1tb7Nu3LyL+89a3xYsXD8y/9dZbY8+ePfGNb3wjdu7cGY8++mj87Gc/i7vuumtkXgEAAMBJyDuK/vCHP8Sll14al156aURE1NfXx6WXXhorV66MiIi//vWvA4EUEfHhD384Nm7cGC+99FLMmjUrfvCDH8SPfvSjqK2tHaGXAAAAMHwn9T1FY6WrqyvKysqis7PT7xQBAEDCRqMNRv13igAAAN7LRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkbVhR1NTUFDNnzoySkpKoqqqKLVu2vOP8NWvWxAUXXBCnn356VFZWxl133RX//ve/h7VhAACAkZR3FG3YsCHq6+ujoaEhtm3bFrNmzYra2to4cODAkPOffvrpWL58eTQ0NMSOHTviiSeeiA0bNsQ999xz0psHAAA4WXlH0cMPPxxf+tKXYunSpfHxj3881q5dG2eccUY8+eSTQ85/5ZVX4oorrogbbrghZs6cGddcc00sXLjwXe8uAQAAjIW8oqi3tze2bt0aNTU1/32CwsKoqamJ1tbWIddcfvnlsXXr1oEI2rNnT2zatCmuvfba416np6cnurq6Bj0AAABGw6R8Jh86dCj6+vqivLx80Hh5eXns3LlzyDU33HBDHDp0KD796U9HlmVx9OjRuPXWW9/x7XONjY3xwAMP5LM1AACAYRn1T5/bvHlzrFq1Kh599NHYtm1b/OIXv4iNGzfGgw8+eNw1K1asiM7OzoHH/v37R3ubAABAovK6UzRlypQoKiqKjo6OQeMdHR1RUVEx5Jr7778/Fi1aFDfffHNERFx88cXR3d0dt9xyS9x7771RWHhsl+VyucjlcvlsDQAAYFjyulNUXFwcc+bMiZaWloGx/v7+aGlpierq6iHXvPXWW8eET1FRUUREZFmW734BAABGVF53iiIi6uvrY8mSJTF37tyYN29erFmzJrq7u2Pp0qUREbF48eKYMWNGNDY2RkTE/Pnz4+GHH45LL700qqqqYvfu3XH//ffH/PnzB+IIAABgvOQdRXV1dXHw4MFYuXJltLe3x+zZs6O5uXngwxf27ds36M7QfffdFwUFBXHffffFG2+8ER/4wAdi/vz58Z3vfGfkXgUAAMAwFWQT4D1sXV1dUVZWFp2dnVFaWjre2wEAAMbJaLTBqH/6HAAAwHuZKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkDSuKmpqaYubMmVFSUhJVVVWxZcuWd5z/5ptvxrJly2LatGmRy+Xi/PPPj02bNg1rwwAAACNpUr4LNmzYEPX19bF27dqoqqqKNWvWRG1tbezatSumTp16zPze3t747Gc/G1OnTo1nnnkmZsyYEX/5y1/irLPOGon9AwAAnJSCLMuyfBZUVVXFZZddFo888khERPT390dlZWXcfvvtsXz58mPmr127Nr7//e/Hzp0747TTThvWJru6uqKsrCw6OzujtLR0WM8BAABMfKPRBnm9fa63tze2bt0aNTU1/32CwsKoqamJ1tbWIdc8//zzUV1dHcuWLYvy8vK46KKLYtWqVdHX13dyOwcAABgBeb197tChQ9HX1xfl5eWDxsvLy2Pnzp1DrtmzZ0/8+te/jhtvvDE2bdoUu3fvjttuuy2OHDkSDQ0NQ67p6emJnp6egZ+7urry2SYAAMAJG/VPn+vv74+pU6fG448/HnPmzIm6urq49957Y+3atcdd09jYGGVlZQOPysrK0d4mAACQqLyiaMqUKVFUVBQdHR2Dxjs6OqKiomLINdOmTYvzzz8/ioqKBsY+9rGPRXt7e/T29g65ZsWKFdHZ2Tnw2L9/fz7bBAAAOGF5RVFxcXHMmTMnWlpaBsb6+/ujpaUlqqurh1xzxRVXxO7du6O/v39g7PXXX49p06ZFcXHxkGtyuVyUlpYOegAAAIyGvN8+V19fH+vWrYuf/OQnsWPHjvjKV74S3d3dsXTp0oiIWLx4caxYsWJg/le+8pX4+9//HnfccUe8/vrrsXHjxli1alUsW7Zs5F4FAADAMOX9PUV1dXVx8ODBWLlyZbS3t8fs2bOjubl54MMX9u3bF4WF/22tysrKePHFF+Ouu+6KSy65JGbMmBF33HFH3H333SP3KgAAAIYp7+8pGg++pwgAAIh4D3xPEQAAwKlGFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJC0YUVRU1NTzJw5M0pKSqKqqiq2bNlyQuvWr18fBQUFsWDBguFcFgAAYMTlHUUbNmyI+vr6aGhoiG3btsWsWbOitrY2Dhw48I7r9u7dG1/72tfiyiuvHPZmAQAARlreUfTwww/Hl770pVi6dGl8/OMfj7Vr18YZZ5wRTz755HHX9PX1xY033hgPPPBAnHvuuSe1YQAAgJGUVxT19vbG1q1bo6am5r9PUFgYNTU10draetx13/rWt2Lq1Klx0003ndB1enp6oqura9ADAABgNOQVRYcOHYq+vr4oLy8fNF5eXh7t7e1Drvntb38bTzzxRKxbt+6Er9PY2BhlZWUDj8rKyny2CQAAcMJG9dPnDh8+HIsWLYp169bFlClTTnjdihUrorOzc+Cxf//+UdwlAACQskn5TJ4yZUoUFRVFR0fHoPGOjo6oqKg4Zv6f/vSn2Lt3b8yfP39grL+//z8XnjQpdu3aFeedd94x63K5XORyuXy2BgAAMCx53SkqLi6OOXPmREtLy8BYf39/tLS0RHV19THzL7zwwnj11Vejra1t4PG5z30urr766mhra/O2OAAAYNzldacoIqK+vj6WLFkSc+fOjXnz5sWaNWuiu7s7li5dGhERixcvjhkzZkRjY2OUlJTERRddNGj9WWedFRFxzDgAAMB4yDuK6urq4uDBg7Fy5cpob2+P2bNnR3Nz88CHL+zbty8KC0f1V5UAAABGTEGWZdl4b+LddHV1RVlZWXR2dkZpael4bwcAABgno9EGbukAAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQNFEEAAAkTRQBAABJE0UAAEDSRBEAAJA0UQQAACRNFAEAAEkTRQAAQNJEEQAAkDRRBAAAJE0UAQAASRNFAABA0kQRAACQtGFFUVNTU8ycOTNKSkqiqqoqtmzZcty569atiyuvvDImT54ckydPjpqamnecDwAAMJbyjqINGzZEfX19NDQ0xLZt22LWrFlRW1sbBw4cGHL+5s2bY+HChfHyyy9Ha2trVFZWxjXXXBNvvPHGSW8eAADgZBVkWZbls6Cqqiouu+yyeOSRRyIior+/PyorK+P222+P5cuXv+v6vr6+mDx5cjzyyCOxePHiE7pmV1dXlJWVRWdnZ5SWluazXQAA4BQyGm2Q152i3t7e2Lp1a9TU1Pz3CQoLo6amJlpbW0/oOd566604cuRInH322ced09PTE11dXYMeAAAAoyGvKDp06FD09fVFeXn5oPHy8vJob28/oee4++67Y/r06YPC6n81NjZGWVnZwKOysjKfbQIAAJywMf30udWrV8f69evj2WefjZKSkuPOW7FiRXR2dg489u/fP4a7BAAAUjIpn8lTpkyJoqKi6OjoGDTe0dERFRUV77j2oYceitWrV8evfvWruOSSS95xbi6Xi1wul8/WAAAAhiWvO0XFxcUxZ86caGlpGRjr7++PlpaWqK6uPu66733ve/Hggw9Gc3NzzJ07d/i7BQAAGGF53SmKiKivr48lS5bE3LlzY968ebFmzZro7u6OpUuXRkTE4sWLY8aMGdHY2BgREd/97ndj5cqV8fTTT8fMmTMHfvfofe97X7zvfe8bwZcCAACQv7yjqK6uLg4ePBgrV66M9vb2mD17djQ3Nw98+MK+ffuisPC/N6Aee+yx6O3tjS984QuDnqehoSG++c1vntzuAQAATlLe31M0HnxPEQAAEPEe+J4iAACAU40oAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABImigCAACSJooAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKQNK4qamppi5syZUVJSElVVVbFly5Z3nP/zn/88LrzwwigpKYmLL744Nm3aNKzNAgAAjLS8o2jDhg1RX18fDQ0NsW3btpg1a1bU1tbGgQMHhpz/yiuvxMKFC+Omm26K7du3x4IFC2LBggXx2muvnfTmAQAATlZBlmVZPguqqqrisssui0ceeSQiIvr7+6OysjJuv/32WL58+THz6+rqoru7O1544YWBsU996lMxe/bsWLt27Qlds6urK8rKyqKzszNKS0vz2S4AAHAKGY02mJTP5N7e3ti6dWusWLFiYKywsDBqamqitbV1yDWtra1RX18/aKy2tjaee+65416np6cnenp6Bn7u7OyMiP/8DQAAANL1dhPkeW/nHeUVRYcOHYq+vr4oLy8fNF5eXh47d+4cck17e/uQ89vb2497ncbGxnjggQeOGa+srMxnuwAAwCnqb3/7W5SVlY3Ic+UVRWNlxYoVg+4uvfnmm/GhD30o9u3bN2IvHIbS1dUVlZWVsX//fm/VZFQ5a4wVZ42x4qwxVjo7O+Occ86Js88+e8SeM68omjJlShQVFUVHR8eg8Y6OjqioqBhyTUVFRV7zIyJyuVzkcrljxsvKyvxDxpgoLS111hgTzhpjxVljrDhrjJXCwpH7dqG8nqm4uDjmzJkTLS0tA2P9/f3R0tIS1dXVQ66prq4eND8i4qWXXjrufAAAgLGU99vn6uvrY8mSJTF37tyYN29erFmzJrq7u2Pp0qUREbF48eKYMWNGNDY2RkTEHXfcEVdddVX84Ac/iOuuuy7Wr18ff/jDH+Lxxx8f2VcCAAAwDHlHUV1dXRw8eDBWrlwZ7e3tMXv27Ghubh74MIV9+/YNupV1+eWXx9NPPx333Xdf3HPPPfHRj340nnvuubjoootO+Jq5XC4aGhqGfEsdjCRnjbHirDFWnDXGirPGWBmNs5b39xQBAACcSkbut5MAAAAmIFEEAAAkTRQBAABJE0UAAEDS3jNR1NTUFDNnzoySkpKoqqqKLVu2vOP8n//853HhhRdGSUlJXHzxxbFp06Yx2ikTXT5nbd26dXHllVfG5MmTY/LkyVFTU/OuZxPelu+fa29bv359FBQUxIIFC0Z3g5wy8j1rb775ZixbtiymTZsWuVwuzj//fP8e5YTke9bWrFkTF1xwQZx++ulRWVkZd911V/z73/8eo90yEf3mN7+J+fPnx/Tp06OgoCCee+65d12zefPm+OQnPxm5XC4+8pGPxFNPPZX3dd8TUbRhw4aor6+PhoaG2LZtW8yaNStqa2vjwIEDQ85/5ZVXYuHChXHTTTfF9u3bY8GCBbFgwYJ47bXXxnjnTDT5nrXNmzfHwoUL4+WXX47W1taorKyMa665Jt54440x3jkTTb5n7W179+6Nr33ta3HllVeO0U6Z6PI9a729vfHZz3429u7dG88880zs2rUr1q1bFzNmzBjjnTPR5HvWnn766Vi+fHk0NDTEjh074oknnogNGzbEPffcM8Y7ZyLp7u6OWbNmRVNT0wnN//Of/xzXXXddXH311dHW1hZ33nln3HzzzfHiiy/md+HsPWDevHnZsmXLBn7u6+vLpk+fnjU2Ng45//rrr8+uu+66QWNVVVXZl7/85VHdJxNfvmftfx09ejQ788wzs5/85CejtUVOEcM5a0ePHs0uv/zy7Ec/+lG2ZMmS7POf//wY7JSJLt+z9thjj2Xnnntu1tvbO1Zb5BSR71lbtmxZ9pnPfGbQWH19fXbFFVeM6j45dURE9uyzz77jnG984xvZJz7xiUFjdXV1WW1tbV7XGvc7Rb29vbF169aoqakZGCssLIyamppobW0dck1ra+ug+RERtbW1x50PEcM7a//rrbfeiiNHjsTZZ589WtvkFDDcs/atb30rpk6dGjfddNNYbJNTwHDO2vPPPx/V1dWxbNmyKC8vj4suuihWrVoVfX19Y7VtJqDhnLXLL788tm7dOvAWuz179sSmTZvi2muvHZM9k4aR6oJJI7mp4Th06FD09fVFeXn5oPHy8vLYuXPnkGva29uHnN/e3j5q+2TiG85Z+1933313TJ8+/Zh/+OD/G85Z++1vfxtPPPFEtLW1jcEOOVUM56zt2bMnfv3rX8eNN94YmzZtit27d8dtt90WR44ciYaGhrHYNhPQcM7aDTfcEIcOHYpPf/rTkWVZHD16NG699VZvn2NEHa8Lurq64l//+lecfvrpJ/Q8436nCCaK1atXx/r16+PZZ5+NkpKS8d4Op5DDhw/HokWLYt26dTFlypTx3g6nuP7+/pg6dWo8/vjjMWfOnKirq4t777031q5dO95b4xSzefPmWLVqVTz66KOxbdu2+MUvfhEbN26MBx98cLy3BscY9ztFU6ZMiaKioujo6Bg03tHRERUVFUOuqaioyGs+RAzvrL3toYceitWrV8evfvWruOSSS0Zzm5wC8j1rf/rTn2Lv3r0xf/78gbH+/v6IiJg0aVLs2rUrzjvvvNHdNBPScP5cmzZtWpx22mlRVFQ0MPaxj30s2tvbo7e3N4qLi0d1z0xMwzlr999/fyxatChuvvnmiIi4+OKLo7u7O2655Za49957o7DQ/5vn5B2vC0pLS0/4LlHEe+BOUXFxccyZMydaWloGxvr7+6OlpSWqq6uHXFNdXT1ofkTESy+9dNz5EDG8sxYR8b3vfS8efPDBaG5ujrlz547FVpng8j1rF154Ybz66qvR1tY28Pjc5z438Ek6lZWVY7l9JpDh/Ll2xRVXxO7duwfCOyLi9ddfj2nTpgkijms4Z+2tt946JnzejvH//A49nLwR64L8PgNidKxfvz7L5XLZU089lf3xj3/Mbrnlluyss87K2tvbsyzLskWLFmXLly8fmP+73/0umzRpUvbQQw9lO3bsyBoaGrLTTjste/XVV8frJTBB5HvWVq9enRUXF2fPPPNM9te//nXgcfjw4fF6CUwQ+Z61/+XT5zhR+Z61ffv2ZWeeeWb21a9+Ndu1a1f2wgsvZFOnTs2+/e1vj9dLYILI96w1NDRkZ555ZvbTn/4027NnT/bLX/4yO++887Lrr79+vF4CE8Dhw4ez7du3Z9u3b88iInv44Yez7du3Z3/5y1+yLMuy5cuXZ4sWLRqYv2fPnuyMM87Ivv71r2c7duzImpqasqKioqy5uTmv674noijLsuyHP/xhds4552TFxcXZvHnzst///vcDf+2qq67KlixZMmj+z372s+z888/PiouLs0984hPZxo0bx3jHTFT5nLUPfehDWUQc82hoaBj7jTPh5Pvn2v8nishHvmftlVdeyaqqqrJcLpede+652Xe+853s6NGjY7xrJqJ8ztqRI0eyb37zm9l5552XlZSUZJWVldltt92W/eMf/xj7jTNhvPzyy0P+t9fbZ2vJkiXZVVdddcya2bNnZ8XFxdm5556b/fjHP877ugVZ5v4lAACQrnH/nSIAAIDxJIoAAICkiSIAACBpoggAAEiaKAIAAJImigAAgKSJIgAAIGmiCAAASJooAgAAkiaKAACApIkiAAAgaaIIAABI2v8BdLb54SDSHRYAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x300 with 1 Axes>"
]
...
...
@@ -151,13 +151,15 @@
"aep = []\n",
"_ = interact(plot_flow_field_and_aep, \n",
" WT0=IntSlider(min=-50, max=50, step=1, value=0, continuous_update=False),\n",
" WT1=IntSlider(min=-50, max=50, step=1, value=0, continuous_update=False))"
" WT1=IntSlider(min=-50, max=50, step=1, value=0, continuous_update=False),\n",
" TILT=IntSlider(min=-15, max=15, step=1, value=0, continuous_update=False)\n",
" )"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "
Python 3 (ipykernel)
",
"display_name": "
base
",
"language": "python",
"name": "python3"
},
...
...
@@ -171,7 +173,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1
3
"
"version": "3.9.1
6
"
},
"toc": {
"base_numbering": 1,
...
...
@@ -185,6 +187,11 @@
"toc_position": {},
"toc_section_display": true,
"toc_window_display": true
},
"vscode": {
"interpreter": {
"hash": "dd3b9d673b4bfe33482a03e78865e70547be2b43c3746f7ba94faa9d297d0631"
}
}
},
"nbformat": 4,
...
...
%% Cell type:markdown id: tags:
# Exercise: Wake Deflection
In this exercise you can investigate the wake-deflection effects of yaw-misalignment.
%% Cell type:markdown id: tags:
**Install PyWake if needed**
%% Cell type:code id: tags:
```
python
# Install PyWake if needed
try
:
import
py_wake
except
ModuleNotFoundError
:
!
pip
install
git
+
https
:
//
gitlab
.
windenergy
.
dtu
.
dk
/
TOPFARM
/
PyWake
.
git
```
%% Cell type:markdown id: tags:
**Import Python elements and PyWake objects**
%% Cell type:code id: tags:
```
python
# setup site, wind turbines and wind farm model with the corresponding wake models
import
numpy
as
np
from
ipywidgets
import
interact
from
ipywidgets
import
IntSlider
import
matplotlib.pyplot
as
plt
from
py_wake.flow_map
import
HorizontalGrid
from
py_wake.examples.data.iea37._iea37
import
IEA37Site
,
IEA37_WindTurbines
from
py_wake.literature.gaussian_models
import
Bastankhah_PorteAgel_2014
from
py_wake.deflection_models.jimenez
import
JimenezWakeDeflection
```
%% Cell type:markdown id: tags:
**Specify site to use, as well as wind turbines to set up the wind farm model**
%% Cell type:code id: tags:
```
python
site
=
IEA37Site
(
16
)
x
,
y
=
[
0
,
600
,
1200
],
[
0
,
0
,
0
]
windTurbines
=
IEA37_WindTurbines
()
wfm
=
Bastankhah_PorteAgel_2014
(
site
,
windTurbines
,
deflectionModel
=
JimenezWakeDeflection
())
```
%% Cell type:code id: tags:
```
python
# define function that plots the flow field and AEP history of 3 wind turbines
def
plot_flow_field_and_aep
(
WT0
,
WT1
):
def
plot_flow_field_and_aep
(
WT0
,
WT1
,
TILT
):
ax1
=
plt
.
figure
(
figsize
=
(
20
,
4
)).
gca
()
ax2
=
plt
.
figure
(
figsize
=
(
10
,
3
)).
gca
()
sim_res
=
wfm
(
x
,
y
,
yaw
=
np
.
reshape
([
WT0
,
WT1
,
0
],(
3
,
1
,
1
)),
wd
=
270
,
ws
=
10
)
sim_res
=
wfm
(
x
,
y
,
yaw
=
np
.
reshape
([
WT0
,
WT1
,
0
],(
3
,
1
,
1
)),
wd
=
270
,
ws
=
10
,
tilt
=
TILT
)
sim_res
.
flow_map
(
HorizontalGrid
(
x
=
np
.
linspace
(
0
,
1400
,
200
),
y
=
np
.
linspace
(
-
200
,
200
,
50
))).
plot_wake_map
(
ax
=
ax1
)
ax1
.
set_xlim
([
-
200
,
1400
])
aep
.
append
(
sim_res
.
aep
().
values
[:,
0
,
0
])
aep_arr
=
np
.
array
(
aep
)
for
i
in
range
(
3
):
ax2
.
plot
(
aep_arr
[:,
i
],
'
.-
'
,
label
=
'
WT%d, %.2f
'
%
(
i
,
aep_arr
[
-
1
,
i
]))
ax2
.
plot
(
aep_arr
.
sum
(
1
),
'
.-
'
,
label
=
'
Total, %.2f
'
%
aep_arr
[
-
1
].
sum
())
ax2
.
axhline
(
aep_arr
[
0
].
sum
(),
ls
=
'
--
'
,
c
=
'
r
'
)
ax2
.
set_ylabel
(
'
AEP [GWh]
'
)
ax2
.
set_xlabel
(
'
Iteration
'
)
ax2
.
legend
(
loc
=
'
upper left
'
)
```
%% Cell type:markdown id: tags:
**Move the sliders above and try to find the optimal yaw-misalignment of WT0 and WT1 with respect to total AEP**
%% Cell type:code id: tags:
```
python
# Run the plot_flow_field_and_aep function when moving the sliders
aep
=
[]
_
=
interact
(
plot_flow_field_and_aep
,
WT0
=
IntSlider
(
min
=-
50
,
max
=
50
,
step
=
1
,
value
=
0
,
continuous_update
=
False
),
WT1
=
IntSlider
(
min
=-
50
,
max
=
50
,
step
=
1
,
value
=
0
,
continuous_update
=
False
))
WT1
=
IntSlider
(
min
=-
50
,
max
=
50
,
step
=
1
,
value
=
0
,
continuous_update
=
False
),
TILT
=
IntSlider
(
min
=-
15
,
max
=
15
,
step
=
1
,
value
=
0
,
continuous_update
=
False
)
)
```
%% Output
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment