Skip to content
Snippets Groups Projects
Commit e8c3763c authored by Mads M. Pedersen's avatar Mads M. Pedersen
Browse files

Load support

parent df00892e
No related branches found
No related tags found
3 merge requests!624Multi mirror,!607Cupy RANS NN Surrogate Inference Changes,!256Load support
Pipeline #21102 failed
Showing
with 1705 additions and 897 deletions
......@@ -7,13 +7,14 @@ stages:
# ===== TEST PyWake debian=====
test_PyWake: # name the job what we like
image: continuumio/anaconda3
stage: # build, test, deploy defined by default [2]
test
script:
- pip install -e .
- py.test
- pip install -e .[test]
- pytest
tags: # only runners with this tag can do the job [3]
- python
- ci-ubuntu
# ===== Check code style =====
......@@ -31,7 +32,8 @@ test_PyWake_windows: # name the job what we like
stage: # build, test, deploy defined by default [2]
test
script: # runs on windows machine due to tag below
- source activate pyTopfarm
- source activate py38
- pip install -e .[test]
- pytest --cov-report term-missing:skip-covered --cov=py_wake --cov-config .coveragerc
tags: # tag for shared runner on windows machine
- ANMH_old
......
%% Cell type:markdown id: tags:
# Change log
%% Cell type:markdown id: tags:
## PyWake 2.xxx (March, 2021)
## PyWake 2.2 (March 26, 2021)
### New features and API changes
- All DeficitModels should inherrit either `WakeDeficitModel` or `BlockageDeficitModel`
- All Sites are now subclasses of XRSite
- WeightedSum SuperpositionModel reimplemented to be more efficient
- TurbulenceModels now take a RotorAvgModel as optional input. This allow PyWake to use different RotorAvgModels for wake and turbulence.
- Validation feature updated, see [here](https://topfarm.pages.windenergy.dtu.dk/PyWake/notebooks/exercises/Validation.html)
- The Power/Ct curve functionality of `WindTurbines` has been updated to support multidimensional Power and Ct curves, e.g. curves depending on turbulence intensity, air density, yaw misalignment, operational mode etc. This means that instantiating `WindTurbines` and `OneTypeWindTurbines` with the old set of arguments, i.e. `name, diameter, hub_height, ct_func, power_func, power_unit`, is deprecated. Use the the new `WindTurbine` and `Windturbines` classes with the arguments `name, diameter, hub_height, powerCtFunction` instead, see [here](https://topfarm.pages.windenergy.dtu.dk/PyWake/notebooks/WindTurbines.html). Backward compatibility is ensured (with runtime warning) for most use cases.
The `powerCtFunction` can be one of the classes from py_wake.wind_turbines.power_ct_functions, i.e.
- `PowerCtFunction`
- `PowerCtTabular`
- `PowerCtFunctionList`
- `PowerCtNDTabular`
- `PowerCtXr`
- `CubePowerSimpleCt`
- Support for time series of wd and ws, see [here](https://topfarm.pages.windenergy.dtu.dk/PyWake/notebooks/RunWindFarmSimulation.html#Time-series). Possible use cases:
- Time-dependent inflow, e.g. measurements of wd, ws, ti, shear, density, etc.
- Time-dependent operation, e.g. periods of failure or maintaince of a wind turbine
- Added support for load surrogates to predict wind turbine loads
### New models
- BlockageDeficitModels (see [here](https://topfarm.pages.windenergy.dtu.dk/PyWake/notebooks/EngineeringWindFarmModels.html#Blockage-deficit-models)
- SelfSimilarityDeficit2020
- HybridInduction
- RankineHalfBody
- VortexCylinder
- VortexDipole
- Rathmann
- DeflectionModels
- FugaDeflection (requires Fuga look-up tables, `UL`, `UT`, `VL`, `VT`)
- GroundModels
- Mirror
- MirrorSquaredSum
%% Cell type:markdown id: tags:
## PyWake 2.1 (September 14, 2020)
### New features and API changes
- New xarray data structure
- LocalWind, SimulationResult and FlowMap are now `xarray.Dataset`-objects with some additional methods and attributes
- `simulationResult.aep()` now returns a `xarray.DataArray` with aep for all wind turbines, wind directions and wind speeds. To get the total AEP as before, use `simulationResult.aep().sum()`
- New general XRSite where the site is defined as an xarray with the following structure:
- Required data variables:
- P(probability) or f(sector frequency), A(Weibull scale), k(Weibull shape)
- Optional data variables:
- WS(defaults to reference wind speed, ws), TI(turbulence intensity), SpeedUp, Turning
- All data variables may be constant or dependent on any of:
- ws (reference wind speed)
- wd (reference wind direction)
- position in terms of
- gridded 2D position, (x,y)
- gridded 3D position, (x,y,z)
- wt position, (i)
- [Include effects of neighbouring wind farms](Optimization.ipynb#Pregenerated-site-with-wake-effects-from-neighbouring-wind-farms) in site (wind resource) to speed up optimization of a wind farm with neighbouring farms
![image-2.png](attachment:image-2.png)
- Vertical flow map via the [YZGrid](RunWindFarmSimulation.ipynb#YZGrid)
![image.png](attachment:image.png)
### New models
- New `RotorAverageModel`, see [here](EngineeringWindFarmModels.ipynb#Rotor-average-models). The default model, `RotorCenter`, behaves as before as it estimates the rotor-average wind speed from the wind speed at the rotor center. Other models, however, provides a more accurate estimate based on multiple points on the cost of computation. The `CGIRotorAvg(4)` and `CGIRotorAvg(7)` with 4 and 7 points, respectively, provides good compromises between accuracy and computational cost.
- Deficit model:
- [GCLDeficit](EngineeringWindFarmModels.ipynb#GCLDeficit): The Gunner Larsen semi-analytical wake model
- Superposition model:
- WeightedSum A weighted sum approach taking wake convection velocity into account. The model is so far only applicable to the gaussian models. The model is based on "A momentum-conserving wake superposition method for wind farm power prediction" by Haohua Zong and Fernando Porté-Agel, J. Fluid Mech. (2020), vol. 889, A8; doi:10.1017/jfm.2020.77
%% Cell type:markdown id: tags:
## PyWake 2.0 (April 15, 2020)
- New structure
- Purpose:
- Easier combination of different models for flow propagation, wake and blockage deficit, superposition, wake deflection and turbulence
- More consistent interface to and support for engineering models and PyWake-Rans
- Changes
- `WakeModel` class refactored mainly into the `WindFarmModel`s `EngineeringWindFarmModel` and `PropagateDownwind`
- `WindFarmModel`s, e.g. `NOJ`, `Fuga`, `BastankhahGaussian` returns a `SimulationResult` containing the results as well as an AEP and a flow_map method. See the QuickStart tutorial
- and many more
- Backward compatibility
- AEP Calculator works as before, but is now deprecated
- Lower level interfaces and implementations has changed
- New documentation matching the new structure
- Optional blockage deficit models and implementation of the SelfSimilarity model
- Optional wake deflection models and implementation of a model by Jimenez
......
This diff is collapsed.
from py_wake.examples.data.dtu10mw._dtu10mw import DTU10MW, DTU10WM_RWT, ct_curve, power_curve
......@@ -23,7 +23,7 @@ power_curve = np.array([[4, 280.2],
[23, 10639.5],
[24, 10643.6],
[25, 10635.7],
]) * [1, .94]
]) * [1, .94] # 6% loss
ct_curve = np.array([[4, 0.923],
[5, 0.919],
[6, 0.904],
......
......@@ -94,14 +94,14 @@ HornsrevV80 = V80
class Hornsrev1Site(UniformWeibullSite):
def __init__(self, shear=None):
def __init__(self, ti=.1, shear=None):
f = [3.597152, 3.948682, 5.167395, 7.000154, 8.364547, 6.43485,
8.643194, 11.77051, 15.15757, 14.73792, 10.01205, 5.165975]
a = [9.176929, 9.782334, 9.531809, 9.909545, 10.04269, 9.593921,
9.584007, 10.51499, 11.39895, 11.68746, 11.63732, 10.08803]
k = [2.392578, 2.447266, 2.412109, 2.591797, 2.755859, 2.595703,
2.583984, 2.548828, 2.470703, 2.607422, 2.626953, 2.326172]
UniformWeibullSite.__init__(self, np.array(f) / np.sum(f), a, k, .1, shear=shear)
UniformWeibullSite.__init__(self, np.array(f) / np.sum(f), a, k, ti=ti, shear=shear)
self.initial_position = np.array([wt_x, wt_y]).T
......
from ._iea34_130rwt import IEA34_130_1WT_Surrogate, IEA34_130_2WT_Surrogate
from py_wake.wind_turbines import WindTurbine
import numpy as np
from pathlib import Path
from py_wake.utils.tensorflow_surrogate_utils import TensorflowSurrogate
import inspect
from py_wake.wind_turbines.power_ct_functions import PowerCtSurrogate
from py_wake.wind_turbines.wind_turbine_functions import FunctionSurrogates
from py_wake.examples.data import example_data_path
class IEA34_130_PowerCtSurrogate(PowerCtSurrogate):
def __init__(self, name, input_parser):
surrogate_path = Path(__file__).parent / name
PowerCtSurrogate.__init__(
self,
power_surrogate=TensorflowSurrogate(surrogate_path / "electrical_power", 'operating'),
power_unit='W',
ct_surrogate=TensorflowSurrogate(surrogate_path / 'thrust', 'operating'),
input_parser=input_parser)
ws_idx = self.function_surrogate_lst[0].input_channel_names.index('ws')
self.ws_cutin = self.function_surrogate_lst[0].input_scaler.data_min_[ws_idx] # .wind_speed_cut_in
self.ws_cutout = self.function_surrogate_lst[0].input_scaler.data_max_[ws_idx] # .wind_speed_cut_out
ti_key = [k for k in list(inspect.signature(input_parser).parameters) if k[:2] == 'TI'][0]
thrust_idle = PowerCtSurrogate._power_ct(self, np.array([self.ws_cutout]), **{ti_key: .1})[1] * 1000
self.ct_idle = thrust_idle / (1 / 2 * 1.225 * (65**2 * np.pi) * self.ws_cutout**2)
def _power_ct(self, ws, **kwargs):
power, thrust = PowerCtSurrogate._power_ct(self, ws, **kwargs)
ct = thrust * 1000 / (1 / 2 * 1.225 * (65**2 * np.pi) * ws**2)
power[(ws < self.ws_cutin) | (ws > self.ws_cutout)] = 0
ct[(ws < self.ws_cutin) | (ws > self.ws_cutout)] = self.ct_idle
return power, ct
class TreeRegionLoadSurrogates(FunctionSurrogates):
def __init__(self, function_surrogate_lst, input_parser):
FunctionSurrogates.__init__(self, function_surrogate_lst, input_parser)
self.ws_cutin = function_surrogate_lst[0][0].wind_speed_cut_in
self.ws_cutout = function_surrogate_lst[0][0].wind_speed_cut_out
def __call__(self, ws, run_only=slice(None), **kwargs):
ws_flat = ws.ravel()
x = self.get_input(ws=ws, **kwargs)
x = np.array([self.fix_shape(v, ws).ravel() for v in x]).T
def predict(fs):
output = np.empty(len(x))
for fs_, m in zip(fs, [ws_flat < self.ws_cutin,
(self.ws_cutin <= ws_flat) & (ws_flat <= self.ws_cutout),
ws_flat > self.ws_cutout]):
if m.sum():
output[m] = fs_.predict_output(x[m], bounds='ignore')[:, 0]
return output
return [predict(fs).reshape(ws.shape) for fs in np.asarray(self.function_surrogate_lst)[run_only]]
@property
def output_keys(self):
return [fs[0].output_channel_name for fs in self.function_surrogate_lst]
@property
def wohler_exponents(self):
return [fs[0].wohler_exponent for fs in self.function_surrogate_lst]
class IEA34_130_Base(WindTurbine):
def __init__(self, powerCtFunction, loadFunction):
WindTurbine.__init__(self, 'IEA 3.4MW', diameter=130, hub_height=110,
powerCtFunction=powerCtFunction,
loadFunction=loadFunction)
class IEA34_130_1WT_Surrogate(IEA34_130_Base):
def __init__(self):
sensors = ['del_blade_flap', 'del_blade_edge', 'del_tower_bottom_fa', 'del_tower_bottom_ss',
'del_tower_top_torsion']
surrogate_path = Path(example_data_path) / 'iea34_130rwt' / 'one_turbine'
set_names = ['below_cut_in', 'operating', 'above_cut_out']
loadFunction = TreeRegionLoadSurrogates(
[[TensorflowSurrogate(surrogate_path / s, n) for n in set_names] for s in sensors],
input_parser=lambda ws, TI_eff=.1, Alpha=0: [TI_eff, ws, Alpha])
powerCtFunction = IEA34_130_PowerCtSurrogate(
'one_turbine',
input_parser=lambda ws, TI_eff, Alpha=0: [TI_eff, ws, Alpha])
IEA34_130_Base.__init__(self, powerCtFunction=powerCtFunction, loadFunction=loadFunction)
class IEA34_130_2WT_Surrogate(IEA34_130_Base):
def __init__(self):
sensors = ['del_blade_flap']
surrogate_path = Path(example_data_path) / 'iea34_130rwt' / 'two_turbines'
set_names = ['below_cut_in', 'operating', 'above_cut_out']
loadFunction = TreeRegionLoadSurrogates(
[[TensorflowSurrogate(surrogate_path / s, n) for n in set_names] for s in sensors],
input_parser=self.get_input)
self.max_dist = loadFunction.function_surrogate_lst[0][0].input_scaler.data_max_[4]
self.max_angle = loadFunction.function_surrogate_lst[0][0].input_scaler.data_max_[3]
powerCtFunction = IEA34_130_PowerCtSurrogate(
'two_turbines',
input_parser=(lambda ws, TI=.1, Alpha=0, get_input=self.get_input:
get_input(ws, TI=TI, Alpha=Alpha, dw_ijl=np.array([0]), hcw_ijl=0)))
IEA34_130_Base.__init__(self, powerCtFunction=powerCtFunction, loadFunction=loadFunction)
def get_input(self, ws, dw_ijl, hcw_ijl, TI, Alpha=0):
# ['ws','ti', 'shear', 'wdir', 'dist']
dist = np.atleast_1d((np.hypot(dw_ijl, hcw_ijl) / 130))
wd = np.atleast_1d(np.rad2deg(np.arctan2(hcw_ijl, dw_ijl)))
unwaked = (dist == 0) | (dist > self.max_dist) | (np.abs(wd) > self.max_angle)
dist[unwaked] = 20
wd[unwaked] = 20
return [ws, TI, Alpha, wd, dist]
def main():
if __name__ == '__main__':
from py_wake.examples.data.hornsrev1 import Hornsrev1Site
from py_wake.turbulence_models.stf import STF2017TurbulenceModel
from py_wake import NOJ
import matplotlib.pyplot as plt
u = np.arange(3, 28, .1)
# ===============================================================================================================
# IEA34_130_1WT_Surrogate
# ===============================================================================================================
wt = IEA34_130_1WT_Surrogate()
# plot power/ct curves
ax1 = plt.gca()
ax2 = plt.twinx()
for ti in [0.01, .05, .1, .3]:
power, ct = wt.power_ct(u, TI_eff=ti)
ax1.plot(u, power / 1000, label=f'TI={ti}')
ax2.plot(u, ct, '--')
ax1.legend()
ax1.set_ylabel('Power [kW]')
ax2.set_ylabel('Ct')
plt.figure()
ax1 = plt.gca()
ax2 = plt.twinx()
for alpha in [-0.09, .1, .3, .49]:
power, ct = wt.power_ct(u, TI_eff=.1, Alpha=alpha)
ax1.plot(u, power / 1000, label=f'Alpha={alpha}')
ax2.plot(u, ct, '--')
ax1.legend()
ax1.set_ylabel('Power [kW]')
ax2.set_ylabel('Ct')
# plot load curves
sensors = wt.loadFunction.output_keys
axes = [plt.figure().gca() for _ in sensors]
for ti in [0.01, .05, .1, .3]:
loads = wt.loads(u, TI_eff=ti)
for ax, l in zip(axes, loads):
ax.plot(u, l, label=f'TI={ti}')
for alpha in [-0.09, .1, .3, .49]:
loads = wt.loads(u, TI_eff=.1, Alpha=alpha)
for ax, l in zip(axes, loads):
ax.plot(u, l, '--', label=f'Alpha={alpha}')
for ax, s in zip(axes, sensors):
ax.set_title(s)
ax.legend()
# plot loads as function of wd and ws
plt.figure()
site = Hornsrev1Site()
x, y = [0, 1000], [0, 0]
sim_res = NOJ(site, wt, turbulenceModel=STF2017TurbulenceModel())(x, y, ws=np.arange(6, 25), Alpha=.12)
load_wd_averaged = sim_res.loads(normalize_probabilities=True, method='OneWT_WDAvg')
loads = sim_res.loads(normalize_probabilities=True, method='OneWT')
loads.DEL.isel(sensor=0, wt=0).plot()
for s in load_wd_averaged.sensor:
print(s.item(), load_wd_averaged.LDEL.sel(sensor=s, wt=0).item(), loads.LDEL.sel(sensor=s, wt=0).item())
plt.show()
# =======================================================================================================================
# IEA34_130_2WTSurrogate
# =======================================================================================================================
wt = IEA34_130_2WT_Surrogate()
# plot power/ct curves
plt.figure()
ax1 = plt.gca()
ax2 = plt.twinx()
for ti in [0.01, .05, .1, .3]:
power, ct = wt.power_ct(u, TI=ti)
ax1.plot(u, power, label=f'TI={ti}')
ax2.plot(u, ct, '--')
ax1.legend()
ax1.set_ylabel('Power [kW]')
ax2.set_ylabel('Ct')
plt.figure()
ax1 = plt.gca()
ax2 = plt.twinx()
for alpha in [-0.09, .1, .3, .49]:
power, ct = wt.power_ct(u, TI=.1, Alpha=alpha)
ax1.plot(u, power / 1000, label=f'Alpha={alpha}')
ax2.plot(u, ct, '--')
ax1.set_ylabel('Power [kW]')
ax2.set_ylabel('Ct')
ax1.legend()
# plot load curves
sensors = wt.loadFunction.output_keys
axes = [plt.figure().gca() for _ in sensors]
for ti in [0.01, .05, .1, .3]:
loads = wt.loads(u, TI=ti, Alpha=.12, dw_ijl=0, hcw_ijl=0)
for ax, l in zip(axes, loads):
ax.plot(u, l, label=f'TI={ti}')
for alpha in [-0.09, .1, .3, .49]:
loads = wt.loads(u, TI=.1, Alpha=alpha, dw_ijl=np.array([1000]), hcw_ijl=0)
for ax, l in zip(axes, loads):
ax.plot(u, l, '--', label=f'Alpha={alpha}')
for ax, s in zip(axes, sensors):
ax.set_title(s)
ax.legend()
# plot loads as function of wd and ws
plt.figure()
site = Hornsrev1Site()
x, y = [0, 1000], [0, 0]
sim_res = NOJ(site, wt, turbulenceModel=STF2017TurbulenceModel())(x, y, ws=np.arange(3, 28), Alpha=.12)
loads = sim_res.loads(normalize_probabilities=True, method='TwoWT')
loads.DEL.isel(sensor=0, wt=0).plot()
for s in loads.sensor:
print(s.item(), loads.LDEL.sel(sensor=s, wt=0).item())
plt.show()
main()
{
"input_channel_names": [
"ti",
"ws",
"shear"
],
"output_channel_name": "MomentMy Mbdy:blade1 nodenr: 1 coo: blade1 blade root moment blade1",
"wind_speed_cut_in": 4.0,
"wind_speed_cut_out": 25.0,
"wohler_exponent": 10,
"input_scalers": {
"below_cut_in": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 290,
"scale_": [
4.093931847815023,
1.5527559984108794,
10.034296914116865
],
"min_": [
-3.00460564098673,
-3.206397077344649,
-2.0024497794364287
],
"data_min_": [
0.0011249921,
0.1329230591,
-0.0994140625
],
"data_max_": [
1.4667087446,
3.997020191,
0.4985351562
],
"data_range_": [
1.4655837525,
3.8640971319,
0.5979492187
]
},
"above_cut_out": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 138,
"scale_": [
17.108732300045514,
1.2235952583871186,
10.058939096267192
],
"min_": [
-3.028362517654116,
-33.59896481247119,
-2.0029469543104126
],
"data_min_": [
0.0016577802,
25.0074234946,
-0.0991210938
],
"data_max_": [
0.3523558854,
29.9110057526,
0.4973632812
],
"data_range_": [
0.3506981052,
4.903582258,
0.596484375
]
},
"operating": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 1572,
"scale_": [
11.79559835553993,
0.28710421679370607,
10.014669925814587
],
"min_": [
-3.000817363012889,
-4.148878985987874,
-2.0014669922476362
],
"data_min_": [
6.92939e-05,
4.0016095856,
-0.0997070313
],
"data_max_": [
0.5087336125,
24.8999442287,
0.4994140625
],
"data_range_": [
0.5086643186,
20.8983346431,
0.5991210938
]
}
},
"output_scalers": {
"below_cut_in": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 290,
"scale_": [
0.003217829437758253
],
"min_": [
-2.241711711671581
],
"data_min_": [
385.8848754073917
],
"data_max_": [
1007.4218582355832
],
"data_range_": [
621.5369828281914
]
},
"above_cut_out": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 138,
"scale_": [
0.006414867921372538
],
"min_": [
-5.543090761343728
],
"data_min_": [
708.2126735933917
],
"data_max_": [
1019.9883834777
],
"data_range_": [
311.7757098843083
]
},
"operating": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 1572,
"scale_": [
0.0021491953622476507
],
"min_": [
-11.971056356553449
],
"data_min_": [
5104.727354836558
],
"data_max_": [
6035.308182960242
],
"data_range_": [
930.5808281236841
]
}
}
}
\ No newline at end of file
File added
File added
File added
{
"input_channel_names": [
"ti",
"ws",
"shear"
],
"output_channel_name": "MomentMx Mbdy:blade1 nodenr: 1 coo: blade1 blade root moment blade1",
"wind_speed_cut_in": 4.0,
"wind_speed_cut_out": 25.0,
"wohler_exponent": 10,
"input_scalers": {
"below_cut_in": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 290,
"scale_": [
4.093931847815023,
1.5527559984108794,
10.034296914116865
],
"min_": [
-3.00460564098673,
-3.206397077344649,
-2.0024497794364287
],
"data_min_": [
0.0011249921,
0.1329230591,
-0.0994140625
],
"data_max_": [
1.4667087446,
3.997020191,
0.4985351562
],
"data_range_": [
1.4655837525,
3.8640971319,
0.5979492187
]
},
"above_cut_out": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 138,
"scale_": [
17.108732300045514,
1.2235952583871186,
10.058939096267192
],
"min_": [
-3.028362517654116,
-33.59896481247119,
-2.0029469543104126
],
"data_min_": [
0.0016577802,
25.0074234946,
-0.0991210938
],
"data_max_": [
0.3523558854,
29.9110057526,
0.4973632812
],
"data_range_": [
0.3506981052,
4.903582258,
0.596484375
]
},
"operating": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 1572,
"scale_": [
11.79559835553993,
0.28710421679370607,
10.014669925814587
],
"min_": [
-3.000817363012889,
-4.148878985987874,
-2.0014669922476362
],
"data_min_": [
6.92939e-05,
4.0016095856,
-0.0997070313
],
"data_max_": [
0.5087336125,
24.8999442287,
0.4994140625
],
"data_range_": [
0.5086643186,
20.8983346431,
0.5991210938
]
}
},
"output_scalers": {
"below_cut_in": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 290,
"scale_": [
0.0044128736952490375
],
"min_": [
-16.790881035417325
],
"data_min_": [
3578.366870644408
],
"data_max_": [
4031.586277796992
],
"data_range_": [
453.2194071525837
]
},
"above_cut_out": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 138,
"scale_": [
0.004608273201192155
],
"min_": [
-15.907513088691113
],
"data_min_": [
3234.945594118542
],
"data_max_": [
3668.947640586317
],
"data_range_": [
434.002046467775
]
},
"operating": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 1572,
"scale_": [
0.00032756328073293837
],
"min_": [
-1.359284416662768
],
"data_min_": [
1096.839718599875
],
"data_max_": [
7202.530184041866
],
"data_range_": [
6105.690465441991
]
}
}
}
\ No newline at end of file
File added
File added
File added
{
"input_channel_names": [
"ti",
"ws",
"shear"
],
"output_channel_name": "MomentMx Mbdy:tower nodenr: 1 coo: tower tower bottom moment",
"wind_speed_cut_in": 4.0,
"wind_speed_cut_out": 25.0,
"wohler_exponent": 4,
"input_scalers": {
"below_cut_in": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 290,
"scale_": [
4.093931847815023,
1.5527559984108794,
10.034296914116865
],
"min_": [
-3.00460564098673,
-3.206397077344649,
-2.0024497794364287
],
"data_min_": [
0.0011249921,
0.1329230591,
-0.0994140625
],
"data_max_": [
1.4667087446,
3.997020191,
0.4985351562
],
"data_range_": [
1.4655837525,
3.8640971319,
0.5979492187
]
},
"above_cut_out": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 138,
"scale_": [
17.108732300045514,
1.2235952583871186,
10.058939096267192
],
"min_": [
-3.028362517654116,
-33.59896481247119,
-2.0029469543104126
],
"data_min_": [
0.0016577802,
25.0074234946,
-0.0991210938
],
"data_max_": [
0.3523558854,
29.9110057526,
0.4973632812
],
"data_range_": [
0.3506981052,
4.903582258,
0.596484375
]
},
"operating": {
"feature_range": [
-3.0,
3.0
],
"copy": true,
"n_features_in_": 3,
"n_samples_seen_": 1572,
"scale_": [
11.79559835553993,
0.28710421679370607,
10.014669925814587
],
"min_": [
-3.000817363012889,
-4.148878985987874,
-2.0014669922476362
],
"data_min_": [
6.92939e-05,
4.0016095856,
-0.0997070313
],
"data_max_": [
0.5087336125,
24.8999442287,
0.4994140625
],
"data_range_": [
0.5086643186,
20.8983346431,
0.5991210938
]
}
},
"output_scalers": {
"below_cut_in": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 290,
"scale_": [
0.0006468022347309646
],
"min_": [
-2.4917984877225337
],
"data_min_": [
2306.4213566656003
],
"data_max_": [
5398.556622450348
],
"data_range_": [
3092.135265784748
]
},
"above_cut_out": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 138,
"scale_": [
0.0005535856485690355
],
"min_": [
-3.5032795237167074
],
"data_min_": [
4521.937174830017
],
"data_max_": [
8134.747595710333
],
"data_range_": [
3612.810420880316
]
},
"operating": {
"feature_range": [
-1.0,
1.0
],
"copy": true,
"n_features_in_": 1,
"n_samples_seen_": 1572,
"scale_": [
0.0001684019418641057
],
"min_": [
-2.0006685073252397
],
"data_min_": [
5942.1435183493495
],
"data_max_": [
17818.491129672784
],
"data_range_": [
11876.347611323436
]
}
}
}
\ No newline at end of file
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment