Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
WindEnergyToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mimc
WindEnergyToolbox
Commits
8458d8e7
Commit
8458d8e7
authored
6 years ago
by
Mads M. Pedersen
Browse files
Options
Downloads
Patches
Plain Diff
Add ktho's standard power curve model
parent
dc378b54
No related branches found
No related tags found
No related merge requests found
Pipeline
#6725
failed
6 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wetb/standard_models/power_curve.py
+104
-0
104 additions, 0 deletions
wetb/standard_models/power_curve.py
with
104 additions
and
0 deletions
wetb/standard_models/power_curve.py
0 → 100644
+
104
−
0
View file @
8458d8e7
import
numpy
as
np
def
standard_power_curve
(
power_norm
,
diameter
,
turbulence_intensity
=
.
1
,
shear
=
(
0
,
100
),
rho
=
1.225
,
max_cp
=
.
49
,
gear_loss_const
=
.
01
,
gear_loss_var
=
.
014
,
generator_loss
=
0.03
,
converter_loss
=
.
03
):
"""
Generate standard power curve
The method is extracted from an Excel spreadsheet made by Kenneth Thomsen, DTU Windenergy and
ported into python by Mads M. Pedersen, DTU Windenergy.
Parameters
----------
power_norm : int or float
Nominal power [kW]
diameter : int or float
Rotor diameter [m]
turbulence_intensity : float
Turbulence intensity [%]
shear : (power shear coefficient, hub height)
Power shear arguments
\n
- Power shear coeficient, alpha
\n
- Hub height [m]
rho : float optional
Density of air [kg/m^3], defualt is 1.225
max_cp : float
Maximum power coefficient
gear_loss_const : float
Constant gear loss [%]
gear_loss_var : float
Variable gear loss [%]
generator_loss : float
Generator loss [%]
converter_loss : float
Examples
--------
wsp, power = standard_power_curve(10000, 178.3)
plot(wsp, power)
show()
"""
area
=
(
diameter
/
2
)
**
2
*
np
.
pi
wsp_lst
=
np
.
arange
(
0.5
,
25
,
.
5
)
sigma_lst
=
wsp_lst
*
turbulence_intensity
def
norm_dist
(
x
,
my
,
sigma
):
if
turbulence_intensity
>
0
:
return
1
/
np
.
sqrt
(
2
*
np
.
pi
*
sigma
**
2
)
*
np
.
exp
(
-
(
x
-
my
)
**
2
/
(
2
*
sigma
**
2
))
else
:
return
x
==
my
p_aero
=
.
5
*
rho
*
area
*
wsp_lst
**
3
*
max_cp
/
1000
# calc power - gear, generator and conv loss
# gear_loss = gear_loss_const * power_norm + gear_loss_var * p_aero
# p_gear = p_aero - gear_loss
# p_gear[p_gear < 0] = 0
# gen_loss = generator_loss * p_gear
# p_gen = p_gear - gen_loss
# converter_loss = converter_loss * p_gen
# p_raw = p_gen - converter_loss
# p_raw[p_raw > power_norm] = power_norm
p_raw
=
p_aero
-
power_loss
(
p_aero
,
power_norm
,
gear_loss_const
,
gear_loss_var
,
generator_loss
,
converter_loss
)
powers
=
[]
shear_weighted_wsp
=
[]
alpha
,
hub_height
=
shear
r
=
diameter
/
2
z
=
np
.
linspace
(
hub_height
-
r
,
hub_height
+
r
,
100
,
endpoint
=
True
)
shear_factors
=
(
z
/
hub_height
)
**
alpha
rotor_width
=
2
*
np
.
sqrt
(
r
**
2
-
(
hub_height
-
z
)
**
2
)
for
wsp
,
sigma
in
zip
(
wsp_lst
,
sigma_lst
):
shear_weighted_wsp
.
append
(
wsp
*
(
np
.
trapz
(
shear_factors
**
3
*
rotor_width
,
z
)
/
(
area
))
**
(
1
/
3
))
ndist
=
norm_dist
(
wsp_lst
,
wsp
,
sigma
)
powers
.
append
((
ndist
*
p_raw
).
sum
()
/
ndist
.
sum
())
return
wsp_lst
,
lambda
wsp
:
np
.
interp
(
wsp
,
wsp_lst
,
powers
)
return
wsp_lst
,
np
.
interp
(
shear_weighted_wsp
,
wsp_lst
,
powers
)
def
power_loss
(
power_aero
,
power_norm
,
gear_loss_const
=
.
01
,
gear_loss_var
=
.
014
,
generator_loss
=
0.03
,
converter_loss
=
.
03
):
gear_loss
=
gear_loss_const
*
power_norm
+
gear_loss_var
*
power_aero
p_gear
=
power_aero
-
gear_loss
p_gear
[
p_gear
<
0
]
=
0
gen_loss
=
generator_loss
*
p_gear
p_gen
=
p_gear
-
gen_loss
converter_loss
=
converter_loss
*
p_gen
p_electric
=
p_gen
-
converter_loss
p_electric
[
p_electric
>
power_norm
]
=
power_norm
return
power_aero
-
p_electric
if
__name__
==
'
__main__
'
:
from
matplotlib.pyplot
import
plot
,
show
plot
(
*
standard_power_curve
(
10000
,
178.3
,
0.
,
(
0
,
119
),
gear_loss_const
=
.
0
,
gear_loss_var
=
.
0
,
generator_loss
=
0.0
,
converter_loss
=
.
0
))
plot
(
*
standard_power_curve
(
10000
,
178.3
,
0.03
,
(
0
,
119
),
gear_loss_const
=
.
0
,
gear_loss_var
=
.
0
,
generator_loss
=
0.0
,
converter_loss
=
.
0
))
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment