Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Working with Data in Pandas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When we are working with data, it can be extremely useful to have arrays that are \"smart\", so they have information on which columns are which data channels, or perhaps index by a date. It's also really nice to have powerful data selection with little coding. Pandas is a fairly new package that accomplishes that."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Further Resources"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are many available resources for tutorials with pandas. Here is just a few: \n",
"- [DTU Wind Energy Toolbox](https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/docs/using-statistics-df.md) \n",
"- [Pandas cookbook](https://pandas.pydata.org/pandas-docs/stable/tutorials.html) \n",
"- [Dataquest blog](https://www.dataquest.io/blog/pandas-python-tutorial/) \n",
"- [Google](https://www.google.dk/search?q=pandas+tutorials) \n",
"- (etc.)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preliminaries"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial will be loading data from `risoe_demo_data.csv` (located in the repository). I generated the data in the `.csv` file by quering the Risø V52 met mast SQL database.\n",
"\n",
"In case you want to query an SQL database yourself later: \n",
"1. Get granted access to the database by the owner (you need a username/password) \n",
"2. Use conda to install Python package `sqlalchemy` (see Workshop 1) \n",
"3. Install `mysqlclient` using conda (Mac/Linux) or pip \n",
"4. Use the code in the cell below to query the SQL database and load the results to pandas. Be sure to delete the \"DEMO ONLY\" lines (unless you want to save your queried data as a `.csv`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# host, port = 'ri-veadbs04', 3306 # this is the host and port I was told for the Risø V52 met mast SQL database\n",
"# dbname = 'v52mast_risoe.calmeans' # this is the database name for the mean values of the met mast\n",
"# username, password = ADD_ME, ADD_ME # here is where you add strings of your username and password\n",
"# db_path = 'risoe_demo_data.csv' # name of the csv I created for this demo. (DEMO ONLY)\n",
"# n_load = 500 # how many values to load for the demo\n",
"#\n",
"# query = f'select * from {dbname} limit {n_load};' # an SQL query (get n_load rows from the database)\n",
"# con_str = f'mysql+mysqldb://{username}:{password}@{host}:{port}' # connection string for sqlalchemy\n",
"# engine = sqlalchemy.create_engine(con_str) # create a conneciton engine in sqlalchemy\n",
"# with engine.connect() as conn: # use what's called a \"context manager\" to make sure connection closes\n",
"# df = pd.read_sql_query(query, conn) # load the results from my query to a pandas dataframe\n",
"# df.to_csv(db_path, index=False) # save the pandas dataframe to a csv file (DEMO ONLY)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As always, we must first import the modules we want to use before we can write any code. Iøm also setting the jupyter matploblib option to be interactive, as we can do in notebooks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"% matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading Data using Pandas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we have a `.csv`, pandas can immediately load it. If you have a file that's delimited by whitespace, you can use the option `delim_whitespace=True` to parse it properly. Our file is separated by commas, however, so there's no need to use that option."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_path = 'data/demo_risoe_data_means.csv' # define the path to our csv file\n",
"means_df = pd.read_csv(means_path) # read the CSV to a pandas dataframe\n",
"stdvs_path = 'data/demo_risoe_data_stdvs.csv'\n",
"stdvs_df = pd.read_csv(stdvs_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that `read_csv()` is a function that is defined in the pandas module. We imported pandas as `pd`, then we used the dot operator to access the function defined in the module.\n",
"\n",
"The `read_csv()` function has now loaded the `.csv` information into a pandas-specific object called a [DataFrame](https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe). This object comes with many useful attributes (things associated with the object) and methods (functions associated with the object) that are listed [here](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexes and Columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For now, let's focus on the dataframe with the mean values. We'll look into combining it with the std one a bit later.\n",
"\n",
"The dataframe is essentially a 2D array. We can determine the shape of the underlying array using the `shape` attribute: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We pulled 500 rows from the SQL database, so that makes sense. We have 65 columns. Let's see what those are, eh?\n",
"\n",
"The beauty of dataframes is that the rows and columns are labeled with an \"index\" and a column identifier, respectively. We can access the index and list of columns using the following commands:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(means_df.index)\n",
"print(means_df.columns.values) # add '.values' to \"prettify\" output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So, our current index is just a \"range\" (i.e., a set of integers) from 0 to 499, and we have a lot of columns. Let's glimpse our dataframe."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df.head() # take a look at the first few rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How cool! And jupyter prints things so nicely. \n",
"\n",
"We can also get a statistical glimpse at the dataframe using `describe()`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's pretty cool. All the information is lined up nicely.\n",
"\n",
"**BUT** now that we are looking at it, our index should probably be `name`. (After all, that's a unique identifier for each row.) And, while we're at it, let's change `name` from an integer to a datetime datatype. (This is not only [really powerful](https://pandas.pydata.org/pandas-docs/stable/timeseries.html), it will also be useful later.) The string format specifiers can be found [here](https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df['name'] = pd.to_datetime(means_df['name'].astype(str), format='%Y%m%d%H%M') # convert name to datetime\n",
"means_df.set_index('name', inplace=True) # set name as index (see cell below for notes)\n",
"means_df.head() # preview new dataframe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sweet! Now our index is a datetime that makes sense.\n",
"\n",
"A few notes on `set_index()`: \n",
"- By default, it will not change the original dataframe but will return a new dataframe. We actually want to change the original, though, so we use `inplace=True`. \n",
"- By default, it will delete the column once the new index has been defined. If you don't want this for some reason, use `drop=False`.\n",
"\n",
"Let's quickly do the same for the dataframe with the standard deviations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"stdvs_df['name'] = pd.to_datetime(stdvs_df['name'].astype(str), format='%Y%m%d%H%M') # convert name to datetime\n",
"stdvs_df.set_index('name', inplace=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hm...it's annoying that we have two different dataframes. Could we combine them?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Merging Dataframes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If two dataframes have the same index (e.g., a date), then we can merge them into a single dataframe. This is really nice for slicing, as we'll see later.\n",
"\n",
"First, we need to check that their indices match. If they don't, then merging will cause weird things."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df.index.equals(stdvs_df.index) # check whether one index equals the other"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The indices match! Great.\n",
"\n",
"Now, for merging. The webpage on merging is [here](https://pandas.pydata.org/pandas-docs/stable/merging.html). It's important that our column names of each dataframe don't match."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df.columns.equals(stdvs_df.columns) # check whether the columns match"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Crap. They do. Well, let's fix it by appending `'_mean'` to the columns in `means_df` and `'_stdv'` to the columns in `stdvs_df`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"means_df = means_df.add_suffix('_mean') # append '_mean' to all columns\n",
"stdvs_df = stdvs_df.add_suffix('_stdv') # append '_stdv' to all columns\n",
"print(means_df.columns[:2].values, stdvs_df.columns[:2].values) # check our new columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cool. Now that the columns are different, but the indexes are the same, we can just use pandas `concat()` function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"met_df = pd.concat([means_df, stdvs_df], axis=1) # concatenating horizontally\n",
"print(means_df.shape, stdvs_df.shape, met_df.shape)\n",
"met_df.columns.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"EXCELLENT. Now that we have a dataframe with both the means and the standard deviation combined, let's look into how we can sub-select useful data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Slicing a Pandas Dataframe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are generally two ways to slice a dataframe: by integers (i.e., classic array slicing) or by index/column labels. A detailed explanation of indexing is [here](https://pandas.pydata.org/pandas-docs/stable/indexing.html).\n",
"\n",
"Let's explore both ways."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Integer-Based Slicing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Integer slicing should look very familiar to you: this is very similary to NumPy array slicing. We perform integer slicing using the `iloc` attribute.\n",
"\n",
"There are two categories within integer-based slicing to keep in your mind: \n",
"1. Slicing and returning a dataframe \n",
"2. Slicing and returning a pandas dataseries \n",
"\n",
"Let's start with returning a dataframe."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"slice_df = met_df.iloc[4:9, [0, 3, 7, 9]] # rows 4 through 8 of a selection of 4 different columns\n",
"slice_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, you can return a data series instead of a dataframe if you specify the column as a single integer. Note, in this case, that you will lose some of the dataframe-specific methods and attributes. For example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bad_slice = met_df.iloc[:, 0] # bad_slice is actually a series, not a dataframe\n",
"print(type(bad_slice))\n",
"bad_slice.columns # this dies! series don't have columns!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Label-Based Slicing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Integer slicing can be really annoying in a lot of cases. After all, who wants to keep track of which column is a specific data channel? Ain't nobody got time for that.\n",
"\n",
"That's where label-based slicing is king.\n",
"\n",
"Just as with integer-based slicing, there are two categories within label-based slicing: \n",
"1. Slicing and returning a dataframe \n",
"2. Slicing and returning a data series\n",
"\n",
"Let's tackle option 2 first."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wsp_ds = met_df.Wsp_70m_mean # you can access any underlying data series by using the dot operator\n",
"wsp_ds.head() # the resulting ds still has its index, and a few of the same methods as the dataframe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, onto option 1. Let's show how powerful pandas is.\n",
"\n",
"Let's say I want all the mean wind speed outputs at all heights for October 18, 2015. How can I do that?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"oct_day_slice = met_df.loc['2015-10-18', [s for s in met_df.columns if 'Wsp' in s and '_mean' in s]] # BOOOOOOOOM\n",
"oct_day_slice.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's explain this in a bit more detail.\n",
"\n",
"First, the date slicing. Pandas is *smart*. If you feed in a string that is 'YYYY', 'YYYY-MM', or 'YYYY-MM-DD', it will interpret what you probably mean. So, we've used this option to pull out all data from the 18th of October with this index: \n",
"\n",
"`'2015-10-18'` \n",
"\n",
"You could also specify a range of days (e.g., `'2015-10-18':'2015-10-20'`). Note that the last day will be included in the slice, unlike normal array indexing.\n",
"\n",
"That's dang snazzy.\n",
"\n",
"Now, I have also used list comprehension to get a list of columns with `Wsp` in the column with this line: \n",
"\n",
"`[s for s in met_df.columns if 'Wsp' in s]` \n",
"\n",
"Remember that, with list comprehension, the line above is just like the following for loop: \n",
"```lc_list = []\n",
"for s in met_df.columns:\n",
" if 'Wsp' in s:\n",
" lc_list.append(s)\n",
"```\n",
"\n",
"We can check that the output matches what we expect:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f'First: {oct_day_slice.index[0]}, Last: {oct_day_slice.index[-1]}') # first and last index items\n",
"print(oct_day_slice.columns.values) # adding `.values` keeps it from outputting useful, though cluttering, metadata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Selecting and Plotting Data Based on Dataframe Values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pandas can also select sub-dataframes based on the values in the dataframe. For example, let's take all the data in October, filter it so that the $U_{70m}>2$ m/s and $\\sigma_u> 0.2$, and do some quick analyses with it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"oct_slice = met_df.loc['2015-10', :] # all data in october\n",
"oct_slice = oct_slice.loc[(oct_slice.Wsp_70m_mean > 2) & (oct_slice.Wsp_70m_stdv > 0.2)] # u > 2 and sig_u > 0.2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the first line, we are using pandas's partial string slicing to get all the data in October. In the second line, we then take the October slice, and apply our desired filtering. Note that we've had to separate the partial-date slicing with the other filtering, because pandas unfortunately can't seem to handle them combined.\n",
"\n",
"Now that we have our filtered, desired slice, let's make a few quick plots."
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" this.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",