Newer
Older
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import int
from builtins import map
from builtins import str
from builtins import zip
from future import standard_library
standard_library.install_aliases()
import pandas as pd
import numpy as np
import glob
import os
import functools
from wetb.hawc2.sel_file import SelFile
#HOURS_PR_20YEAR = 20 * 365 * 24
# hack around FileNotFoundError not being in Python2
try:
FileNotFoundError
except NameError as e:
class FileNotFoundError(OSError):
pass
def Weibull(u, k, start, stop, step):
C = 2 * u / np.sqrt(np.pi)
cdf = lambda x :-np.exp(-(x / C) ** k)
return {wsp:-cdf(wsp - step / 2) + cdf(wsp + step / 2) for wsp in np.arange(start, stop + step, step)}
def Weibull2(u, k, wsp_lst):
C = 2 * u / np.sqrt(np.pi)
cdf = lambda x :-np.exp(-(x / C) ** k)
edges = np.r_[wsp_lst[0] - (wsp_lst[1] - wsp_lst[0]) / 2, (wsp_lst[1:] + wsp_lst[:-1]) / 2, wsp_lst[-1] + (wsp_lst[-1] - wsp_lst[-2]) / 2]
return [-cdf(e1) + cdf(e2) for wsp, e1, e2 in zip(wsp_lst, edges[:-1], edges[1:])]
def Weibull_IEC(Vref, Vhub_lst):
"""Weibull distribution according to IEC 61400-1:2005, page 24
Parameters
----------
Vref : int or float
Vref of wind turbine class
Vhub_lst : array_like
Wind speed at hub height. Must be equally spaced.
Returns
-------
nd_array : list of probabilities
Examples
--------
>>> Weibull_IEC(50, [4,6,8])
[ 0.11002961 0.14116891 0.15124155]
"""
Vhub_lst = np.array(Vhub_lst)
#Average wind speed
Vave=.2*Vref
#Rayleigh distribution
Pr = lambda x : 1 - np.exp(-np.pi*(x/(2*Vave))**2)
#Wsp bin edges: [4,6,8] -> [3,5,7,9]
wsp_bin_edges = np.r_[Vhub_lst[0] - (Vhub_lst[1] - Vhub_lst[0]) / 2, (Vhub_lst[1:] + Vhub_lst[:-1]) / 2, Vhub_lst[-1] + (Vhub_lst[-1] - Vhub_lst[-2]) / 2]
#probabilities of 3-5, 5-7, 7-9
return np.array([-Pr(e1) + Pr(e2) for e1, e2 in zip(wsp_bin_edges[:-1], wsp_bin_edges[1:])])
def __init__(self, filename, fail_on_resfile_not_found=False, shape_k=2.0):
# Weibul distribution shape parameter
self.shape_k = shape_k
df_vars = pd.read_excel(self.filename, sheetname='Variables',
for name, value in zip(df_vars.index, df_vars.Value.values):
setattr(self, name.lower(), value)
raise Warning("The 'Variables' sheet of '%s' must contain the "
"variable 'res_path' specifying the path to the "
"result folder" % self.filename)
self.res_path = os.path.join(os.path.dirname(self.filename), self.res_path)
#DLC sheet
self.dlc_df = pd.read_excel(self.filename, sheetname='DLC', skiprows=[1])
# empty strings are now nans, convert back to empty strings
self.dlc_df.fillna('', inplace=True)
# force headers to lower case
self.dlc_df.columns = [k.lower() for k in self.dlc_df.columns]
if 'dlc' not in self.dlc_df.columns and 'name' in self.dlc_df.columns:
# rename old style "name" column to "dlc"
self.dlc_df = self.dlc_df.rename(columns={'name': 'dlc'})
# ignore rows where column dlc is empty
self.dlc_df = self.dlc_df[self.dlc_df['dlc'] != '']
for k in ['load', 'dlc', 'dlc_dist', 'wsp', 'wsp_dist']:
assert k.lower() in self.dlc_df.keys(), "DLC sheet must have a '%s' column" % k
self.dist_value_keys = [('dlc_dist', 'dlc'), ('wsp_dist', 'wsp')]
self.dist_value_keys.extend([(k, k.replace("_dist", ""))
for k in self.dlc_df.keys()
if k.endswith("_dist") and k not in ('dlc_dist', 'wsp_dist')])
for i, (dk, vk) in enumerate(self.dist_value_keys):
try:
msg = "DLC sheet must have a '%s'-column when having a '%s'-column"
assert vk in self.dlc_df.keys(), msg % (vk, dk)
except AssertionError as e:
if vk == "dlc" and 'name' in self.dlc_df.keys():
columns = list(self.dlc_df.columns)
columns[columns.index('name')] = 'dlc'
self.dlc_df.columns = columns
else:
raise e
self.dlc_df[vk].values[:] = [str(n).lower().replace(vk, "") for n in self.dlc_df[vk]]
if 'psf' not in self.dlc_df:
self.dlc_df['psf'] = 1
# Sensors sheet
self.sensor_df = pd.read_excel(self.filename, sheetname='Sensors')
# empty strings are now nans, convert back to empty strings
self.sensor_df.fillna('', inplace=True)
# force headers to lower case
self.sensor_df.columns = [k.lower() for k in self.sensor_df.columns]
for k in ['Name', 'Nr']:
assert k.lower() in self.sensor_df.keys(), "Sensor sheet must have a '%s' column" % k
self.sensor_df = self.sensor_df[self.sensor_df.name!=""]
assert not any(self.sensor_df['name'].duplicated()), "Duplicate sensor names: %s" % ",".join(self.sensor_df['name'][self.sensor_df['name'].duplicated()].values)
for k in ['description', 'unit', 'statistic', 'ultimate', 'fatigue', 'm', 'neql', 'extremeload', 'bearingdamage', 'mindistance', 'maxdistance']:
if k not in self.sensor_df.keys():
self.sensor_df[k] = ""
for _, row in self.sensor_df[self.sensor_df['fatigue'] != ""].iterrows():
msg = "Invalid m-value for %s (m='%s')" % (row['name'], row['m'])
assert isinstance(row['m'], (int, float)), msg
msg = "Invalid NeqL-value for %s (NeqL='%s')" % (row['name'], row['neql'])
assert isinstance(row['neql'], (int, float)), msg
for name, nrs in zip(self.sensor_info("extremeload").name, self.sensor_info("extremeload").nr):
msg = "'Nr' for Extremeload-sensor '%s' must contain 6 sensors (Fx,Fy,Fz,Mx,My,Mz)" % name
assert (np.atleast_1d((eval(str(nrs)))).shape[0] == 6), msg
def __str__(self):
return self.filename
def sensor_info(self, sensors=[]):
if sensors != []:
sensors = np.atleast_1d(sensors)
empty_column = pd.DataFrame([""] * len(self.sensor_df.name))[0]
return self.sensor_df[functools.reduce(np.logical_or, [((self.sensor_df.get(f, empty_column).values != "") | (self.sensor_df.name == f)) for f in sensors])]
else:
return self.sensor_df
def dlc_variables(self, dlc):
dlc_row = self.dlc_df[self.dlc_df['name'] == dlc]
def get_lst(x):
if isinstance(x, pd.Series):
x = x.iloc[0]
if ":" in str(x):
start, step, stop = [float(eval(v, globals(), self.__dict__)) for v in x.lower().split(":")]
return list(np.arange(start, stop + step, step))
else:
return [float(eval(v, globals(), self.__dict__)) for v in str(x).lower().replace("/", ",").split(",")]
wsp = get_lst(dlc_row['wsp'])
wdir = get_lst(dlc_row['wdir'])
return wsp, wdir
def distribution(self, value_key, dist_key, row):
values = self.dlc_df[value_key][row]
if ":" in values:
start, step, stop = [float(eval(v, globals(), self.__dict__)) for v in values.lower().split(":")]
values = np.arange(start, stop + step, step)
else:
try:
values = [(eval(v, globals(), self.__dict__)) for v in str(values).lower().replace("/", ",").split(",")]
except SyntaxError:
values = [(eval(v.lstrip('0'), globals(), self.__dict__)) for v in str(values).lower().replace("/", ",").split(",")]
dist = self.dlc_df[dist_key][row]
if str(dist).lower() == "weibull" or str(dist).lower() == "rayleigh":
else:
def fmt(v):
if "#" in str(v):
return v
else:
if v == "":
return 0
else:
return float(v) / 100
dist = [fmt(v) for v in str(self.dlc_df[dist_key][row]).replace("/", ",").split(",")]
assert len(values) == len(dist), "Number of %s-values (%d)!= number of %s-values(%d)" % (value_key, len(values), dist_key, len(dist))
return OrderedDict(zip(map(self.format_tag_value, values), dist))
for row, load in self.dlc_df['load'].iteritems():
if "F" not in str(load).upper():
continue
dlc = self.dlc_df[self.dist_value_keys[0][1]][row]
fatigue_dist[str(dlc)] = [self.distribution(value_key, dist_key, row) for dist_key, value_key in self.dist_value_keys]

David Verelst
committed
def files_dict(self, files=None):
"""
Parameters
----------
files : list, default=None
When files is None, files_dict will search for files defined in
the res_folder or res_path attribute if the former is absence.
Returns
-------
files_dict : dict
Dictionary holding the file name, total run hours as key, value
pairs.
"""
fatigue_dlcs = self.dlc_df[['F' in str(l).upper() for l in self.dlc_df['load']]]['dlc']
if len(fatigue_dlcs) == 0:
return {}

David Verelst
committed
if isinstance(files, list):
pass
elif not hasattr(self, "res_folder") or self.res_folder == "":
files = glob.glob(os.path.join(self.res_path, "*.sel")) + glob.glob(os.path.join(self.res_path, "*/*.sel"))
else:
files = []
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
for dlc_id in fatigue_dlcs:
dlc_id = str(dlc_id)
if "%" in self.res_folder:
folder = self.res_folder % dlc_id
else:
folder = self.res_folder
files.extend(glob.glob(os.path.join(self.res_path , folder, "*.sel")))
keys = list(zip(*self.dist_value_keys))[1]
fmt = self.format_tag_value
tags = [[fmt(tag.replace(key, "")) for tag, key in zip(os.path.basename(f).split("_"), keys)] for f in files]
dlc_tags = list(zip(*tags))[0]
files_dict = {dlc_tag:{} for dlc_tag in dlc_tags}
for tag_row, f in zip(tags, files):
d = files_dict[tag_row[0]]
for tag in tag_row[1:]:
if tag not in d:
d[tag] = {}
d = d[tag]
if 'files' not in d:
d['files'] = []
d['files'].append(f)
return files_dict
def format_tag_value(self, v):
try:
if int(float(v)) == float(v):
return int(float(v))
return float(v)
except ValueError:
return v
def probability(self, props, f, files):
total_prop = 1
for prop in props[::-1]:
if str(prop).startswith("#"):
duration = SelFile(f).duration
prop = float(prop[1:]) * duration / (60 * 60 * 24 * 365)
return prop * total_prop
else:
total_prop *= prop
return total_prop

David Verelst
committed
def file_hour_lst(self, years=20, files_dict=None, dist_dict=None):
"""Create a list of (filename, hours_pr_year) that can be used as input for LifeTimeEqLoad
Returns
-------
file_hour_lst : list
[(filename, hours),...] where\n
- filename is the name of the file, including path
- hours is the number of hours pr. 20 year of this file
"""
fh_lst = []

David Verelst
committed
if dist_dict is None:
dist_dict = self.fatigue_distribution()
if files_dict is None:
files_dict = self.files_dict()
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
for dlc_id in sorted(dist_dict.keys()):
dlc_id = str(dlc_id)
fmt = self.format_tag_value
def tag_prop_lst(dist_lst):
if len(dist_lst) == 0:
return [[]]
return [[(fmt(tag), prop)] + tl for tl in tag_prop_lst(dist_lst[1:]) for tag, prop in dist_lst[0].items()]
def files_from_tags(self, f_dict, tags):
if len(tags) == 0:
return f_dict['files']
try:
return files_from_tags(self, f_dict[tags[0]], tags[1:])
except KeyError:
if self.dist_value_keys[-len(tags)][1] == "wdir":
try:
return files_from_tags(self, f_dict[tags[0] % 360], tags[1:])
except:
pass
raise
for tag_props in (tag_prop_lst(dist_dict[dlc_id])):
tags, props = zip(*tag_props)
try:
files = (files_from_tags(self, files_dict, tags))
except KeyError:
if self.fail_on_resfile_not_found:
raise FileNotFoundError("Result files for %s not found" % (", ".join(["%s='%s'" % (dv[1], t) for dv, t in zip(self.dist_value_keys, tags)])))
continue
if files:
f_prob = self.probability(props, files[0], files) / len(files)
f_hours_pr_20year = 365 * 24 * years * f_prob
fh_lst.append((f, f_hours_pr_20year))
return fh_lst
def dlc_lst(self, load='all'):
dlc_lst = np.array(self.dlc_df['dlc'])[np.array([load == 'all' or load.lower() in d.lower() for d in self.dlc_df['load']])]
return [v.lower().replace('dlc', '') for v in dlc_lst]
@cache_function
def psf(self):
return {dlc: float((psf, 1)[psf == ""]) for dlc, psf in zip(self.dlc_df['dlc'], self.dlc_df['psf']) if dlc != ""}
dlc_hl = DLCHighLevel(r'X:\DTU10MW\Q0010\DLC_post_betas1.xlsx')
#print (DLCHighLevelInputFile(r'C:\mmpe\Projects\DLC.xlsx').sensor_info(0, 0, 1)['Name'])
#print (dlc_dict()['64'])
#print (dlc_hl.fatigue_distribution()['64'])