Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 3 19:53:59 2014
@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import dict
from io import open as opent
from builtins import range
from builtins import str
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object
__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'
import os
import copy
import struct
import math
from time import time
import codecs
import scipy
import scipy.integrate as integrate
import array
import numpy as np
import pandas as pd
# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb.prepost import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""Read a HAWC2 result data file
Usage:
obj = LoadResults(file_path, file_name)
This class is called like a function:
HawcResultData() will read the specified file upon object initialization.
Available output:
obj.sig[timeStep,channel] : complete result file in a numpy array
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
obj.error_msg: is 'none' if everything went OK, otherwise it holds the
error
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos'] = pos
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""

David Verelst
committed
# ch_df columns, these are created by LoadResults._unified_channel_names
cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',

David Verelst
committed
'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr',
'direction'])
# start with reading the .sel file, containing the info regarding
# how to read the binary file and the channel information
def __init__(self, file_path, file_name, debug=False, usecols=None,
readdata=True):
self.debug = debug
# timer in debug mode
if self.debug:
start = time()
self.file_path = file_path
# remove .log, .dat, .sel extensions who might be accedental left
if file_name[-4:] in ['.htc', '.sel', '.dat', '.log']:
file_name = file_name[:-4]
# FIXME: since HAWC2 will always have lower case output files, convert
# any wrongly used upper case letters to lower case here
self.file_name = file_name.lower()
FileName = os.path.join(self.file_path, self.file_name)
ReadOnly = 0 if readdata else 1
super(LoadResults, self).__init__(FileName, ReadOnly=ReadOnly)
ChVec = [] if usecols is None else usecols
self.sig = super(LoadResults, self).__call__(ChVec=ChVec)
if self.debug:
stop = time() - start
print('time to load HAWC2 file:', stop, 's')
def reformat_sig_details(self):
"""Change HAWC2 output description of the channels short descriptive
strings, usable in plots
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
"""
# CONFIGURATION: mappings between HAWC2 and short good output:
change_list = []
change_list.append( ['original', 'new improved'] )
# change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
# change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
# change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
# change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
# change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
# change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
# change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )
change_list.append(['Mx coo: blade1', 'blade1 flap'])
change_list.append(['My coo: blade1', 'blade1 edge'])
change_list.append(['Mz coo: blade1', 'blade1 torsion'])
change_list.append(['Mx coo: blade2', 'blade2 flap'])
change_list.append(['My coo: blade2', 'blade2 edge'])
change_list.append(['Mz coo: blade2', 'blade2 torsion'])
change_list.append(['Mx coo: blade3', 'blade3 flap'])
change_list.append(['My coo: blade3', 'blade3 edeg'])
change_list.append(['Mz coo: blade3', 'blade3 torsion'])
change_list.append(['Mx coo: hub1', 'blade1 out-of-plane'])
change_list.append(['My coo: hub1', 'blade1 in-plane'])
change_list.append(['Mz coo: hub1', 'blade1 torsion'])
change_list.append(['Mx coo: hub2', 'blade2 out-of-plane'])
change_list.append(['My coo: hub2', 'blade2 in-plane'])
change_list.append(['Mz coo: hub2', 'blade2 torsion'])
change_list.append(['Mx coo: hub3', 'blade3 out-of-plane'])
change_list.append(['My coo: hub3', 'blade3 in-plane'])
change_list.append(['Mz coo: hub3', 'blade3 torsion'])
# this one will create a false positive for tower node nr1
change_list.append(['Mx coo: tower', 'tower top momemt FA'])
change_list.append(['My coo: tower', 'tower top momemt SS'])
change_list.append(['Mz coo: tower', 'yaw-moment'])
change_list.append(['Mx coo: chasis', 'chasis momemt FA'])
change_list.append(['My coo: chasis', 'yaw-moment chasis'])
change_list.append(['Mz coo: chasis', 'chasis moment SS'])
self.ch_details_new = np.ndarray(shape=(self.Nch, 3), dtype='<U100')
# approach: look for a specific description and change it.
# This approach is slow, but will not fail if the channel numbers change
# over different simulations
for ch in range(self.Nch):
# the change_list will always be slower, so this loop will be
# inside the bigger loop of all channels
for k in range(len(change_list)):
if change_list[k][0] == self.ch_details[ch, 0]:
self.ch_details_new[ch, 0] = change_list[k][1]
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# channel description should be unique, so delete current
# entry and stop looking in the change list
del change_list[k]
break
# self.ch_details_new = ch_details_new
def _unified_channel_names(self):
"""
Make certain channels independent from their index.
The unified channel dictionary ch_dict holds consequently named
channels as the key, and the all information is stored in the value
as another dictionary.
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
node numbers start with 0 at the root
element numbers start with 1 at the root
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos']
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
For many of the aero sensors:
'Cl', 'Cd', 'Alfa', 'Vrel'
key:
sensortype-blade_nr-pos
Cl-1-0.01
value:
ch_dict[tag]['sensortype']
ch_dict[tag]['blade_nr']
ch_dict[tag]['pos']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# save them in a dictionary, use the new coherent naming structure
# as the key, and as value again a dict that hols all the different
# classifications: (chi, channel nr), (coord, coord), ...
self.ch_dict = dict()
# some channel ID's are unique, use them
ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
ch_aerogrid = set(['a_grid', 'am_grid'])
# also safe as df
# cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
# 'component', 'pos', 'coord', 'sensortype', 'radius',
# 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
# 'azimuth', 'flap_nr'])
df_dict['ch_name'] = []
# scan through all channels and see which can be converted
# to sensible unified name
for ch in range(self.Nch):
# remove empty values in the list
items = misc.remove_items(items, '')
dll = False
# be carefull, identify only on the starting characters, because
# the signal tag can hold random text that in some cases might
# trigger a false positive
# -----------------------------------------------------------------
# check for all the unique channel descriptions
if self.ch_details[ch,0].strip() in ch_unique:
channelinfo['units'] = self.ch_details[ch, 1]
channelinfo['sensortag'] = self.ch_details[ch, 2]
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# or in the long description:
# 0 1 2 3 4 5 6 and up
# MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT
coord = items[5]
bodyname = items[1].replace('Mbdy:', '')
# set nodenr to sortable way, include leading zeros
# node numbers start with 0 at the root
nodenr = '%03i' % int(items[3])
# skip the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'momentvec'
component = items[0][-1:len(items[0])]
# the tag only exists if defined
if len(items) > 6:
sensortag = ' '.join(items[6:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 and up
# Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT
coord = items[6]
bodyname = items[2].replace('Mbdy:', '')
nodenr = '%03i' % int(items[4])
# skipe the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'forcevec'
component = items[1][1]
if len(items) > 7:
sensortag = ' '.join(items[7:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 8
# State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade
# 0 1 2 3 4 5 6 7 8 9+
# State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label
# State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label
elif self.ch_details[ch,2].startswith('State'):
# or self.ch_details[ch,0].startswith('euler') \
# or self.ch_details[ch,0].startswith('ax') \
# or self.ch_details[ch,0].startswith('omega') \
# or self.ch_details[ch,0].startswith('proj'):
coord = items[8]
bodyname = items[3].replace('Mbdy:', '')
# element numbers start with 1 at the root
elementnr = '%03i' % int(items[5])
zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
# skip the attached the component
#sensortype = ''.join(items[0:2])
# or give the sensor type the same name as in HAWC2
sensortype = tmp[0]
if sensortype.startswith('State'):
sensortype += ' ' + tmp[1]
component = items[2]
if len(items) > 8:
sensortag = ' '.join(items[9:])
else:
sensortag = ''
# and tag it
pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# DLL CONTROL I/O
# there are two scenario's on how the channel description is formed
# the channel id is always the same though
# id for all three cases:
# DLL out 1: 3
# DLL inp 2: 3
# description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
# 0 1 2 3 4+
# yaw_control outvec 3 yaw_c input reference angle
# description case 2 ("dll inpvec 2 1" in htc output):
# 0 1 2 3 4 5 6+
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch, 0].startswith('bea'):
output_type = self.ch_details[ch, 0].split(' ')[1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch, 0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch, 2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
radius = dscr_list[-1]
# is this always valid?
# sometimes the units for aero sensors are wrong!
# there is no label option
# and tag it
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch, 0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch, 0].strip()[:5] == 'Induc':
items = self.ch_details[ch, 2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
coord = items[1].strip()
component = items[0][-2:]
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch, 2].startswith('Water'):
units = self.ch_details[ch, 1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch, 0].startswith('WSP gl.'):
units = self.ch_details[ch, 1]
direction = self.ch_details[ch, 0].split(',')[1]
tmp = self.ch_details[ch, 2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch, 0].startswith('WSP V'):
units = self.ch_details[ch, 1].strip()
direction = self.ch_details[ch, 0].split(' ')[1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch, 2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch, 0][:7] == 'setbeta':
units = self.ch_details[ch, 1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
for ch_name, channelinfo in self.ch_dict.items():
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(ch_name)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1, :].max(axis=0)
stats['min'] = sig[i0:i1, :].min(axis=0)
stats['mean'] = sig[i0:i1, :].mean(axis=0)
stats['std'] = sig[i0:i1, :].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
return stats
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype': 'state pos', 'component': 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command.
"""
# because the formatting is really weird, we need to sanatize it a bit
with opent(fname, 'r') as f:
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
# read the header from line 3
f.readline()
f.readline()
header = f.readline().replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
data = np.loadtxt(fname, skiprows=3)
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
# Body data for body number : 3 with the name :nacelle
# Results: fd [Hz] fn [Hz] log.decr [%]
# Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = opent(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n', '').replace('\r', '').split(':')
# modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters