Skip to content
Snippets Groups Projects
windIO.py 61 KiB
Newer Older
# -*- coding: utf-8 -*-
"""
Created on Thu Apr  3 19:53:59 2014

@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import dict
from io import open as opent
from builtins import range
from builtins import str
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object

__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'

import os
import copy
import struct
import math
from time import time
import codecs

import scipy
import scipy.integrate as integrate
import array
import numpy as np
import pandas as pd

# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb.prepost import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
tlbl's avatar
tlbl committed
from wetb.hawc2.Hawc2io import ReadHawc2
tlbl's avatar
tlbl committed
from wetb.fatigue_tools.fatigue import eq_load

tlbl's avatar
tlbl committed
class LoadResults(ReadHawc2):
    """Read a HAWC2 result data file

    Usage:
    obj = LoadResults(file_path, file_name)

    This class is called like a function:
    HawcResultData() will read the specified file upon object initialization.

    Available output:
    obj.sig[timeStep,channel]   : complete result file in a numpy array
    obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
    obj.error_msg: is 'none' if everything went OK, otherwise it holds the
    error

    The ch_dict key/values pairs are structured differently for different
        type of channels. Currently supported channels are:

        For forcevec, momentvec, state commands:
            key:
                coord-bodyname-pos-sensortype-component
                global-tower-node-002-forcevec-z
                local-blade1-node-005-momentvec-z
                hub1-blade1-elem-011-zrel-1.00-state pos-z
            value:
                ch_dict[tag]['coord']
                ch_dict[tag]['bodyname']
                ch_dict[tag]['pos'] = pos
                ch_dict[tag]['sensortype']
                ch_dict[tag]['component']
                ch_dict[tag]['chi']
                ch_dict[tag]['sensortag']
                ch_dict[tag]['units']

        For the DLL's this is:
            key:
                DLL-dll_name-io-io_nr
                DLL-yaw_control-outvec-3
                DLL-yaw_control-inpvec-1
            value:
                ch_dict[tag]['dll_name']
                ch_dict[tag]['io']
                ch_dict[tag]['io_nr']
                ch_dict[tag]['chi']
                ch_dict[tag]['sensortag']
                ch_dict[tag]['units']

        For the bearings this is:
            key:
                bearing-bearing_name-output_type-units
                bearing-shaft_nacelle-angle_speed-rpm
            value:
                ch_dict[tag]['bearing_name']
                ch_dict[tag]['output_type']
                ch_dict[tag]['chi']
                ch_dict[tag]['units']

    """
    # ch_df columns, these are created by LoadResults._unified_channel_names
    cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
                'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',
                'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr',
                'direction'])

    # start with reading the .sel file, containing the info regarding
    # how to read the binary file and the channel information
    def __init__(self, file_path, file_name, debug=False, usecols=None,
                 readdata=True):

        self.debug = debug

        # timer in debug mode
        if self.debug:
            start = time()

        self.file_path = file_path
        # remove .log, .dat, .sel extensions who might be accedental left
tlbl's avatar
tlbl committed
        if file_name[-4:] in ['.htc', '.sel', '.dat', '.log']:
            file_name = file_name[:-4]
        # FIXME: since HAWC2 will always have lower case output files, convert
        # any wrongly used upper case letters to lower case here
        self.file_name = file_name.lower()
tlbl's avatar
tlbl committed
        FileName = os.path.join(self.file_path, self.file_name)
tlbl's avatar
tlbl committed

tlbl's avatar
tlbl committed
        ReadOnly = 0 if readdata else 1
        super(LoadResults, self).__init__(FileName, ReadOnly=ReadOnly)
        ChVec = [] if usecols is None else usecols
        self.sig = super(LoadResults, self).__call__(ChVec=ChVec)

        if self.debug:
            stop = time() - start
            print('time to load HAWC2 file:', stop, 's')

    def reformat_sig_details(self):
        """Change HAWC2 output description of the channels short descriptive
        strings, usable in plots

        obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
        """

        # CONFIGURATION: mappings between HAWC2 and short good output:
        change_list = []
tlbl's avatar
tlbl committed
        change_list.append( ['original', 'new improved'] )

#        change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
#        change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
#        change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
#        change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
#        change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
#        change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
#        change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
#        change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
#        change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )

tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: blade1', 'blade1 flap'])
        change_list.append(['My coo: blade1', 'blade1 edge'])
        change_list.append(['Mz coo: blade1', 'blade1 torsion'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: blade2', 'blade2 flap'])
        change_list.append(['My coo: blade2', 'blade2 edge'])
        change_list.append(['Mz coo: blade2', 'blade2 torsion'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: blade3', 'blade3 flap'])
        change_list.append(['My coo: blade3', 'blade3 edeg'])
        change_list.append(['Mz coo: blade3', 'blade3 torsion'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: hub1', 'blade1 out-of-plane'])
        change_list.append(['My coo: hub1', 'blade1 in-plane'])
        change_list.append(['Mz coo: hub1', 'blade1 torsion'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: hub2', 'blade2 out-of-plane'])
        change_list.append(['My coo: hub2', 'blade2 in-plane'])
        change_list.append(['Mz coo: hub2', 'blade2 torsion'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: hub3', 'blade3 out-of-plane'])
        change_list.append(['My coo: hub3', 'blade3 in-plane'])
        change_list.append(['Mz coo: hub3', 'blade3 torsion'])
        # this one will create a false positive for tower node nr1
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: tower', 'tower top momemt FA'])
        change_list.append(['My coo: tower', 'tower top momemt SS'])
        change_list.append(['Mz coo: tower', 'yaw-moment'])
tlbl's avatar
tlbl committed
        change_list.append(['Mx coo: chasis', 'chasis momemt FA'])
        change_list.append(['My coo: chasis', 'yaw-moment chasis'])
        change_list.append(['Mz coo: chasis', 'chasis moment SS'])
tlbl's avatar
tlbl committed
        change_list.append(['DLL inp  2:  2', 'tower clearance'])
tlbl's avatar
tlbl committed
        self.ch_details_new = np.ndarray(shape=(self.Nch, 3), dtype='<U100')

        # approach: look for a specific description and change it.
        # This approach is slow, but will not fail if the channel numbers change
        # over different simulations
        for ch in range(self.Nch):
            # the change_list will always be slower, so this loop will be
            # inside the bigger loop of all channels
tlbl's avatar
tlbl committed
            self.ch_details_new[ch, :] = self.ch_details[ch, :]
            for k in range(len(change_list)):
tlbl's avatar
tlbl committed
                if change_list[k][0] == self.ch_details[ch, 0]:
                    self.ch_details_new[ch, 0] = change_list[k][1]
                    # channel description should be unique, so delete current
                    # entry and stop looking in the change list
                    del change_list[k]
                    break

#        self.ch_details_new = ch_details_new

    def _unified_channel_names(self):
        """
        Make certain channels independent from their index.

        The unified channel dictionary ch_dict holds consequently named
        channels as the key, and the all information is stored in the value
        as another dictionary.

        The ch_dict key/values pairs are structured differently for different
        type of channels. Currently supported channels are:

        For forcevec, momentvec, state commands:
            node numbers start with 0 at the root
            element numbers start with 1 at the root
            key:
                coord-bodyname-pos-sensortype-component
                global-tower-node-002-forcevec-z
                local-blade1-node-005-momentvec-z
                hub1-blade1-elem-011-zrel-1.00-state pos-z
            value:
                ch_dict[tag]['coord']
                ch_dict[tag]['bodyname']
                ch_dict[tag]['pos']
                ch_dict[tag]['sensortype']
                ch_dict[tag]['component']
                ch_dict[tag]['chi']
                ch_dict[tag]['sensortag']
                ch_dict[tag]['units']

        For the DLL's this is:
            key:
                DLL-dll_name-io-io_nr
                DLL-yaw_control-outvec-3
                DLL-yaw_control-inpvec-1
            value:
                ch_dict[tag]['dll_name']
                ch_dict[tag]['io']
                ch_dict[tag]['io_nr']
                ch_dict[tag]['chi']
                ch_dict[tag]['sensortag']
                ch_dict[tag]['units']

        For the bearings this is:
            key:
                bearing-bearing_name-output_type-units
                bearing-shaft_nacelle-angle_speed-rpm
            value:
                ch_dict[tag]['bearing_name']
                ch_dict[tag]['output_type']
                ch_dict[tag]['chi']
                ch_dict[tag]['units']

        For many of the aero sensors:
            'Cl', 'Cd', 'Alfa', 'Vrel'
            key:
                sensortype-blade_nr-pos
                Cl-1-0.01
            value:
                ch_dict[tag]['sensortype']
                ch_dict[tag]['blade_nr']
                ch_dict[tag]['pos']
                ch_dict[tag]['chi']
                ch_dict[tag]['units']
        """
        # save them in a dictionary, use the new coherent naming structure
        # as the key, and as value again a dict that hols all the different
        # classifications: (chi, channel nr), (coord, coord), ...
        self.ch_dict = dict()

        # some channel ID's are unique, use them
        ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
tlbl's avatar
tlbl committed
                         'Ae rot. thrust', 'Time', 'Azi  1'])
        ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
        ch_aerogrid = set(['a_grid', 'am_grid'])

        # also safe as df
#        cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
#                    'component', 'pos', 'coord', 'sensortype', 'radius',
#                    'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
#                    'azimuth', 'flap_nr'])
tlbl's avatar
tlbl committed
        df_dict = {col: [] for col in self.cols}
        df_dict['ch_name'] = []

        # scan through all channels and see which can be converted
        # to sensible unified name
        for ch in range(self.Nch):
tlbl's avatar
tlbl committed
            items = self.ch_details[ch, 2].split(' ')
            # remove empty values in the list
            items = misc.remove_items(items, '')

            dll = False

            # be carefull, identify only on the starting characters, because
            # the signal tag can hold random text that in some cases might
            # trigger a false positive

            # -----------------------------------------------------------------
            # check for all the unique channel descriptions
            if self.ch_details[ch,0].strip() in ch_unique:
tlbl's avatar
tlbl committed
                tag = self.ch_details[ch, 0].strip()
                channelinfo = {}
tlbl's avatar
tlbl committed
                channelinfo['units'] = self.ch_details[ch, 1]
                channelinfo['sensortag'] = self.ch_details[ch, 2]
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # or in the long description:
            #    0          1        2      3  4    5     6 and up
            # MomentMz Mbdy:blade nodenr:   5 coo: blade  TAG TEXT
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 2].startswith('MomentM'):
                coord = items[5]
                bodyname = items[1].replace('Mbdy:', '')
                # set nodenr to sortable way, include leading zeros
                # node numbers start with 0 at the root
                nodenr = '%03i' % int(items[3])
                # skip the attached the component
tlbl's avatar
tlbl committed
                # sensortype = items[0][:-2]
                # or give the sensor type the same name as in HAWC2
                sensortype = 'momentvec'
                component = items[0][-1:len(items[0])]
                # the tag only exists if defined
                if len(items) > 6:
                    sensortag = ' '.join(items[6:])
                else:
                    sensortag = ''

                # and tag it
                pos = 'node-%s' % nodenr
tlbl's avatar
tlbl committed
                tagitems = (coord, bodyname, pos, sensortype, component)
                tag = '%s-%s-%s-%s-%s' % tagitems
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['bodyname'] = bodyname
                channelinfo['pos'] = pos
                channelinfo['sensortype'] = sensortype
                channelinfo['component'] = component
                channelinfo['chi'] = ch
                channelinfo['sensortag'] = sensortag
tlbl's avatar
tlbl committed
                channelinfo['units'] = self.ch_details[ch, 1]

            # -----------------------------------------------------------------
            #   0    1      2        3       4  5     6     7 and up
            # Force  Fx Mbdy:blade nodenr:   2 coo: blade  TAG TEXT
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 2].startswith('Force'):
                coord = items[6]
                bodyname = items[2].replace('Mbdy:', '')
                nodenr = '%03i' % int(items[4])
                # skipe the attached the component
tlbl's avatar
tlbl committed
                # sensortype = items[0]
                # or give the sensor type the same name as in HAWC2
                sensortype = 'forcevec'
                component = items[1][1]
                if len(items) > 7:
                    sensortag = ' '.join(items[7:])
                else:
                    sensortag = ''

                # and tag it
                pos = 'node-%s' % nodenr
tlbl's avatar
tlbl committed
                tagitems = (coord, bodyname, pos, sensortype, component)
                tag = '%s-%s-%s-%s-%s' % tagitems
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['bodyname'] = bodyname
                channelinfo['pos'] = pos
                channelinfo['sensortype'] = sensortype
                channelinfo['component'] = component
                channelinfo['chi'] = ch
                channelinfo['sensortag'] = sensortag
tlbl's avatar
tlbl committed
                channelinfo['units'] = self.ch_details[ch, 1]

            # -----------------------------------------------------------------
            #   0    1  2      3       4      5   6         7    8
            # State pos x  Mbdy:blade E-nr:   1 Z-rel:0.00 coo: blade
            #   0           1     2    3        4    5   6         7     8     9+
            # State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname  label
            # State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname  label
            elif self.ch_details[ch,2].startswith('State'):
#                 or self.ch_details[ch,0].startswith('euler') \
#                 or self.ch_details[ch,0].startswith('ax') \
#                 or self.ch_details[ch,0].startswith('omega') \
#                 or self.ch_details[ch,0].startswith('proj'):
                coord = items[8]
                bodyname = items[3].replace('Mbdy:', '')
                # element numbers start with 1 at the root
                elementnr = '%03i' % int(items[5])
                zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
                # skip the attached the component
                #sensortype = ''.join(items[0:2])
                # or give the sensor type the same name as in HAWC2
tlbl's avatar
tlbl committed
                tmp = self.ch_details[ch, 0].split(' ')
                sensortype = tmp[0]
                if sensortype.startswith('State'):
                    sensortype += ' ' + tmp[1]
                component = items[2]
                if len(items) > 8:
                    sensortag = ' '.join(items[9:])
                else:
                    sensortag = ''

                # and tag it
                pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tlbl's avatar
tlbl committed
                tagitems = (coord, bodyname, pos, sensortype, component)
                tag = '%s-%s-%s-%s-%s' % tagitems
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['bodyname'] = bodyname
                channelinfo['pos'] = pos
                channelinfo['sensortype'] = sensortype
                channelinfo['component'] = component
                channelinfo['chi'] = ch
                channelinfo['sensortag'] = sensortag
tlbl's avatar
tlbl committed
                channelinfo['units'] = self.ch_details[ch, 1]

            # -----------------------------------------------------------------
            # DLL CONTROL I/O
            # there are two scenario's on how the channel description is formed
            # the channel id is always the same though
            # id for all three cases:
            #          DLL out  1:  3
            #          DLL inp  2:  3
            # description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
            #               0         1    2   3     4+
            #          yaw_control outvec  3  yaw_c input reference angle
            # description case 2 ("dll inpvec 2 1" in htc output):
            #           0  1 2     3  4  5  6+
            #          DLL : 2 inpvec :  4  mgen hss
            # description case 3
            #           0         1     2       4
            #          hawc_dll :echo outvec :  1
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('DLL'):
                # case 3
                if items[1][0] == ':echo':
                    # hawc_dll named case (case 3) is polluted with colons
tlbl's avatar
tlbl committed
                    items = self.ch_details[ch,2].replace(':', '')
                    items = items.split(' ')
                    items = misc.remove_items(items, '')
                    dll = items[1]
                    io = items[2]
                    io_nr = items[3]
tlbl's avatar
tlbl committed
                    tag = 'DLL-%s-%s-%s' % (dll, io, io_nr)
                    sensortag = ''
                # case 2: no reference to dll name
                elif self.ch_details[ch,2].startswith('DLL'):
                    dll = items[2]
                    io = items[3]
                    io_nr = items[5]
                    sensortag = ' '.join(items[6:])
                    # and tag it
                    tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
                # case 1: type2 dll name is given
                else:
                    dll = items[0]
                    io = items[1]
                    io_nr = items[2]
                    sensortag = ' '.join(items[3:])
tlbl's avatar
tlbl committed
                    tag = 'DLL-%s-%s-%s' % (dll, io, io_nr)

                # save all info in the dict
                channelinfo = {}
                channelinfo['dll'] = dll
                channelinfo['io'] = io
                channelinfo['io_nr'] = io_nr
                channelinfo['chi'] = ch
                channelinfo['sensortag'] = sensortag
tlbl's avatar
tlbl committed
                channelinfo['units'] = self.ch_details[ch, 1]

            # -----------------------------------------------------------------
            # BEARING OUTPUS
            # bea1 angle_speed       rpm      shaft_nacelle angle speed
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('bea'):
                output_type = self.ch_details[ch, 0].split(' ')[1]
                bearing_name = items[0]
tlbl's avatar
tlbl committed
                units = self.ch_details[ch, 1]
                # there is no label option for the bearing output

                # and tag it
tlbl's avatar
tlbl committed
                tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units)
                # save all info in the dict
                channelinfo = {}
                channelinfo['bearing_name'] = bearing_name
                channelinfo['output_type'] = output_type
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
            # Cl, R=  0.5     deg      Cl of blade  1 at radius   0.49
            # Azi  1          deg      Azimuth of blade  1
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].split(',')[0] in ch_aero:
                dscr_list = self.ch_details[ch, 2].split(' ')
                dscr_list = misc.remove_items(dscr_list, '')

tlbl's avatar
tlbl committed
                sensortype = self.ch_details[ch, 0].split(',')[0]
                radius = dscr_list[-1]
                # is this always valid?
tlbl's avatar
tlbl committed
                blade_nr = self.ch_details[ch, 2].split('blade  ')[1][0]
                # sometimes the units for aero sensors are wrong!
tlbl's avatar
tlbl committed
                units = self.ch_details[ch, 1]
                # there is no label option

                # and tag it
tlbl's avatar
tlbl committed
                tag = '%s-%s-%s' % (sensortype, blade_nr, radius)
                # save all info in the dict
                channelinfo = {}
                channelinfo['sensortype'] = sensortype
                channelinfo['radius'] = float(radius)
                channelinfo['blade_nr'] = int(blade_nr)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # for the induction grid over the rotor
            # a_grid, azi    0.00 r   1.74
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid:
                items = self.ch_details[ch, 0].split(',')
                sensortype = items[0]
                items2 = items[1].split(' ')
                items2 = misc.remove_items(items2, '')
                azi = items2[1]
                radius = items2[3]
tlbl's avatar
tlbl committed
                units = self.ch_details[ch, 1]
                # and tag it
                tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
                # save all info in the dict
                channelinfo = {}
                channelinfo['sensortype'] = sensortype
                channelinfo['radius'] = float(radius)
                channelinfo['azimuth'] = float(azi)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # INDUCTION AT THE BLADE
            # 0: Induc. Vz, rpco, R=  1.4
            # 1: m/s
            # 2: Induced wsp Vz of blade  1 at radius   1.37, RP. coo.
# Induc. Vx, locco, R=  1.4 // Induced wsp Vx of blade  1 at radius   1.37, local ae coo.
# Induc. Vy, blco, R=  1.4 // Induced wsp Vy of blade  1 at radius   1.37, local bl coo.
# Induc. Vz, glco, R=  1.4 // Induced wsp Vz of blade  1 at radius   1.37, global coo.
# Induc. Vx, rpco, R=  8.4 // Induced wsp Vx of blade  1 at radius   8.43, RP. coo.
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].strip()[:5] == 'Induc':
                items = self.ch_details[ch, 2].split(' ')
                items = misc.remove_items(items, '')
                blade_nr = int(items[5])
                radius = float(items[8].replace(',', ''))
tlbl's avatar
tlbl committed
                items = self.ch_details[ch, 0].split(',')
                coord = items[1].strip()
                component = items[0][-2:]
tlbl's avatar
tlbl committed
                units = self.ch_details[ch, 1]
                # and tag it
                rpl = (coord, blade_nr, component, radius)
                tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
                # save all info in the dict
                channelinfo = {}
                channelinfo['blade_nr'] = blade_nr
                channelinfo['sensortype'] = 'induction'
                channelinfo['radius'] = radius
                channelinfo['coord'] = coord
                channelinfo['component'] = component
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # TODO: wind speed
            # some spaces have been trimmed here
            # WSP gl. coo.,Vy          m/s
            # // Free wind speed Vy, gl. coo, of gl. pos   0.00,  0.00,  -2.31
            # WSP gl. coo.,Vdir_hor          deg
            # Free wind speed Vdir_hor, gl. coo, of gl. pos  0.00,  0.00, -2.31

            # -----------------------------------------------------------------
            # WATER SURFACE gl. coo, at gl. coo, x,y=   0.00,   0.00
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 2].startswith('Water'):
                units = self.ch_details[ch, 1]

                # but remove the comma
                x = items[-2][:-1]
                y = items[-1]

                # and tag it
                tag = 'watersurface-global-%s-%s' % (x, y)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = 'global'
                channelinfo['pos'] = (float(x), float(y))
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # WIND SPEED
            # WSP gl. coo.,Vx
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('WSP gl.'):
                units = self.ch_details[ch, 1]
                direction = self.ch_details[ch, 0].split(',')[1]
                tmp = self.ch_details[ch, 2].split('pos')[1]
                x, y, z = tmp.split(',')
                x, y, z = x.strip(), y.strip(), z.strip()

                # and tag it
                tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = 'global'
                channelinfo['pos'] = (x, y, z)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # WIND SPEED AT BLADE
            # 0: WSP Vx, glco, R= 61.5
            # 2: Wind speed Vx of blade  1 at radius  61.52, global coo.
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('WSP V'):
                units = self.ch_details[ch, 1].strip()
                direction = self.ch_details[ch, 0].split(' ')[1].strip()
                blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
                radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
                coord = self.ch_details[ch, 2].split(',')[1].strip()

                radius = radius.strip()
                blade_nr = blade_nr.strip()

                # and tag it
                rpl = (direction, blade_nr, radius, coord)
                tag = 'wsp-blade-%s-%s-%s-%s' % rpl
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['direction'] = direction
                channelinfo['blade_nr'] = int(blade_nr)
                channelinfo['radius'] = float(radius)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # FLAP ANGLE
            # 2: Flap angle for blade  3 flap number  1
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0][:7] == 'setbeta':
                units = self.ch_details[ch, 1].strip()
                blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
                blade_nr = blade_nr.split(' ')[0].strip()
tlbl's avatar
tlbl committed
                flap_nr = self.ch_details[ch, 2].split(' ')[-1].strip()

                radius = radius.strip()
                blade_nr = blade_nr.strip()

                # and tag it
                tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['flap_nr'] = int(flap_nr)
                channelinfo['blade_nr'] = int(blade_nr)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # ignore all the other cases we don't know how to deal with
            else:
                # if we get here, we don't have support yet for that sensor
                # and hence we can't save it. Continue with next channel
                continue

            # -----------------------------------------------------------------
            # ignore if we have a non unique tag
            if tag in self.ch_dict:
                jj = 1
                while True:
                    tag_new = tag + '_v%i' % jj
                    if tag_new in self.ch_dict:
                        jj += 1
                    else:
                        tag = tag_new
                        break
#                msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
#                logging.warn(msg)
#            else:
            self.ch_dict[tag] = copy.copy(channelinfo)

            # -----------------------------------------------------------------
            # save in for DataFrame format
            cols_ch = set(channelinfo.keys())
            for col in cols_ch:
                df_dict[col].append(channelinfo[col])
            # the remainder columns we have not had yet. Fill in blank
            for col in (self.cols - cols_ch):
                df_dict[col].append('')
            df_dict['ch_name'].append(tag)

        self.ch_df = pd.DataFrame(df_dict)
        self.ch_df.set_index('chi', inplace=True)


    def _ch_dict2df(self):
        """
        Create a DataFrame version of the ch_dict, and the chi columns is
        set as the index
        """
        # identify all the different columns
        cols = set()
        for ch_name, channelinfo in self.ch_dict.items():
            cols.update(set(channelinfo.keys()))

tlbl's avatar
tlbl committed
        df_dict = {col: [] for col in cols}
        df_dict['ch_name'] = []
        for ch_name, channelinfo in self.ch_dict.items():
            cols_ch = set(channelinfo.keys())
            for col in cols_ch:
                df_dict[col].append(channelinfo[col])
            # the remainder columns we have not had yet. Fill in blank
            for col in (cols - cols_ch):
                df_dict[col].append('')
            df_dict['ch_name'].append(ch_name)

        self.ch_df = pd.DataFrame(df_dict)
        self.ch_df.set_index('chi', inplace=True)

    def _data_window(self, nr_rev=None, time=None):
        """
        Based on a time interval, create a proper slice object
        ======================================================

        The window will start at zero and ends with the covered time range
        of the time input.

        Paramters
        ---------

        nr_rev : int, default=None
            NOT IMPLEMENTED YET

        time : list, default=None
            time = [time start, time stop]

        Returns
        -------

        slice_

        window

        zoomtype

        time_range
            time_range = [0, time[1]]

        """

        # -------------------------------------------------
        # determine zome range if necesary
        # -------------------------------------------------
        time_range = None
        if nr_rev:
            raise NotImplementedError
            # input is a number of revolutions, get RPM and sample rate to
            # calculate the required range
            # TODO: automatich detection of RPM channel!
            time_range = nr_rev/(self.rpm_mean/60.)
            # convert to indices instead of seconds
            i_range = int(self.Freq*time_range)
            window = [0, time_range]
            # in case the first datapoint is not at 0 seconds
tlbl's avatar
tlbl committed
            i_zero = int(self.sig[0, 0]*self.Freq)
            slice_ = np.r_[i_zero:i_range+i_zero]

            zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'

        elif time.any():
            time_range = time[1] - time[0]

            i_start = int(time[0]*self.Freq)
            i_end = int(time[1]*self.Freq)
            slice_ = np.r_[i_start:i_end]
            window = [time[0], time[1]]

tlbl's avatar
tlbl committed
            zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1])

        return slice_, window, zoomtype, time_range

    # TODO: general signal method, this is not HAWC2 specific, move out
tlbl's avatar
tlbl committed
    def calc_stats(self, sig, i0=0, i1=None):

        stats = {}
        # calculate the statistics values:
tlbl's avatar
tlbl committed
        stats['max'] = sig[i0:i1, :].max(axis=0)
        stats['min'] = sig[i0:i1, :].min(axis=0)
        stats['mean'] = sig[i0:i1, :].mean(axis=0)
        stats['std'] = sig[i0:i1, :].std(axis=0)
        stats['range'] = stats['max'] - stats['min']
tlbl's avatar
tlbl committed
        stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
        stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
        stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
        return stats

    # TODO: general signal method, this is not HAWC2 specific, move out
    def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
        """
tlbl's avatar
tlbl committed
        Parameters
        ----------

        signal: 1D array
            One dimentional array containing the signal.
        no_bins: int
            Number of bins for the binning of the amplitudes.
        m: list
            Values of the slope of the SN curve.
        neq: int
            Number of equivalent cycles

        Returns
        -------
        eq: list
            Damage equivalent loads for each m value.
tlbl's avatar
tlbl committed
        return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]

    def blade_deflection(self):
        """
        """

        # select all the y deflection channels
        db = misc.DictDB(self.ch_dict)

tlbl's avatar
tlbl committed
        db.search({'sensortype': 'state pos', 'component': 'z'})
        # sort the keys and save the mean values to an array/list
        chiz, zvals = [], []
        for key in sorted(db.dict_sel.keys()):
tlbl's avatar
tlbl committed
            zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
            chiz.append(db.dict_sel[key]['chi'])

tlbl's avatar
tlbl committed
        db.search({'sensortype': 'state pos', 'component': 'y'})
        # sort the keys and save the mean values to an array/list
        chiy, yvals = [], []
        for key in sorted(db.dict_sel.keys()):
tlbl's avatar
tlbl committed
            yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
            chiy.append(db.dict_sel[key]['chi'])

        return np.array(zvals), np.array(yvals)

    def save_csv(self, fname, fmt='%.18e', delimiter=','):
        """
        Save to csv and use the unified channel names as columns
        """
        map_sorting = {}
        # first, sort on channel index
        for ch_key, ch in self.ch_dict.items():
            map_sorting[ch['chi']] = ch_key

        header = []
        # not all channels might be present...iterate again over map_sorting
        for chi in map_sorting:
            try:
                sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
                header.append(map_sorting[chi] + ' // ' + sensortag)
            except:
                header.append(map_sorting[chi])

        # and save
        print('saving...', end='')
tlbl's avatar
tlbl committed
        np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
                   delimiter=delimiter, header=delimiter.join(header))
        print(fname)

    def save_df(self, fname):
        """
        Save the HAWC2 data and sel file in a DataFrame that contains all the
        data, and all the channel information (the one from the sel file
        and the parsed from this function)
        """

        self.sig
        self.ch_details
        self.ch_dict


def ReadOutputAtTime(fname):
    """Distributed blade loading as generated by the HAWC2 output_at_time
    command.
    """
    # because the formatting is really weird, we need to sanatize it a bit
    with opent(fname, 'r') as f:
        # read the header from line 3
        f.readline()
        f.readline()
        header = f.readline().replace('\r', '').replace('\n', '')
        cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]

#    data = pd.read_fwf(fname, skiprows=3, header=None)
#    pd.read_table(fname, sep='  ', skiprows=3)
#    data.index.names = cols

    data = np.loadtxt(fname, skiprows=3)
    return pd.DataFrame(data, columns=cols)


def ReadEigenBody(fname, debug=False):
    """
    Read HAWC2 body eigenalysis result file
    =======================================

    Parameters
    ----------

    file_path : str

    file_name : str


    Returns
    -------

    results : DataFrame
        Columns: body, Fd_hz, Fn_hz, log_decr_pct

    """

tlbl's avatar
tlbl committed
    # Body data for body number : 3 with the name :nacelle
    # Results:         fd [Hz]       fn [Hz]       log.decr [%]
    # Mode nr:  1:   1.45388E-21    1.74896E-03    6.28319E+02
    lines = FILE.readlines()
    FILE.close()

tlbl's avatar
tlbl committed
    df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
    for i, line in enumerate(lines):
        if debug: print('line nr: %5i' % i)
        # identify for which body we will read the data
        if line[:25] == 'Body data for body number':
            body = line.split(':')[2].rstrip().lstrip()
            # remove any annoying characters
tlbl's avatar
tlbl committed
            body = body.replace('\n', '').replace('\r', '')
            if debug: print('modes for body: %s' % body)
        # identify mode number and read the eigenfrequencies
        elif line[:8] == 'Mode nr:':
tlbl's avatar
tlbl committed
            linelist = line.replace('\n', '').replace('\r', '').split(':')
            # modenr = linelist[1].rstrip().lstrip()
            # text after Mode nr can be empty
            try:
                eigenmodes = linelist[2].rstrip().lstrip().split('   ')
            except IndexError:
                eigenmodes = ['0', '0', '0']

            if debug: print(eigenmodes)
            # in case we have more than 3, remove all the empty ones
            # this can happen when there are NaN values
            if not len(eigenmodes) == 3:
                eigenmodes = linelist[2].rstrip().lstrip().split(' ')
                eigmod = []
                for k in eigenmodes:
                    if len(k) > 1:
                        eigmod.append(k)
tlbl's avatar
tlbl committed
                # eigenmodes = eigmod
            else:
                eigmod = eigenmodes
            # remove any trailing spaces for each element
            for k in range(len(eigmod)):
tlbl's avatar
tlbl committed
                eigmod[k] = float(eigmod[k])  #.lstrip().rstrip()

            df_dict['body'].append(body)
            df_dict['Fd_hz'].append(eigmod[0])
            df_dict['Fn_hz'].append(eigmod[1])
            df_dict['log_decr_pct'].append(eigmod[2])

    return pd.DataFrame(df_dict)


def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
    """
    Read HAWC2 structure eigenalysis result file
    ============================================

    The file looks as follows:
    #0 Version ID : HAWC2MB 11.3
    #1 ___________________________________________________________________
    #2 Structure eigenanalysis output
    #3 ___________________________________________________________________
    #4 Time : 13:46:59
    #5 Date : 28:11.2012
    #6 ___________________________________________________________________
    #7 Results:         fd [Hz]       fn [Hz]       log.decr [%]
    #8 Mode nr:  1:   3.58673E+00    3.58688E+00    5.81231E+00
    #...
    #302  Mode nr:294:   0.00000E+00    6.72419E+09    6.28319E+02

    Parameters