Newer
Older
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import absolute_import
from builtins import map
from future import standard_library
standard_library.install_aliases()
import numpy as np
def rad(deg):
return deg * np.pi / 180
def deg(rad):
return rad / np.pi * 180
def sind(dir_deg):
return np.sin(rad(dir_deg))
def cosd(dir_deg):
return np.cos(rad(dir_deg))
def tand(dir_deg):
return np.tan(rad(dir_deg))
def mean_deg(dir, axis=0):
"""Mean of angles in degrees
Parameters
----------
dir : array_like
Angles in degrees
axis : int
if dir is 2d array_like, axis defines which axis to take the mean of
return deg(mean_rad(rad(dir), axis))
def mean_rad(dir, axis=0):
"""Mean of angles in radians
Parameters
----------
dir : array_like
Angles in radians
axis : int
if dir is 2d array_like, axis defines which axis to take the mean of
Returns
-------
mean_rad : float
Mean angle
"""
return np.arctan2(np.nanmean(np.sin(dir[:]), axis), np.nanmean(np.cos(dir[:]), axis))
def std_deg(dir):
"""Standard deviation of angles in degrees
Parameters
----------
dir : array_like
Angles in degrees
Returns
-------
std_deg : float
standard deviation
"""
return deg(std_rad(rad(dir)))
def std_rad(dir):
"""Standard deviation of angles in radians
Parameters
----------
dir : array_like
Angles in radians
Returns
-------
std_rad : float
standard deviation
"""
return np.sqrt(1 - (np.nanmean(np.sin(dir)) ** 2 + np.nanmean(np.cos(dir)) ** 2))
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def wsp_dir2uv(wsp, dir, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v
Parameters
----------
wsp : array_like
Horizontal wind speed
dir : array_like
Wind direction
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
"""
if dir_ref is None:
dir = dir[:] - mean_deg(dir[:])
else:
dir = dir[:] - dir_ref
u = np.cos(rad(dir)) * wsp[:]
v = -np.sin(rad(dir)) * wsp[:]
return np.array([u, v])
def wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v,w
Parameters
----------
wsp : array_like
- if wsp_horizontal is True: Horizontal wind speed, $\sqrt{u^2+v^2}\n
- if wsp_horizontal is False: Wind speed, $\sqrt{u^2+v^2+w^2}
dir : array_like
Wind direction
tilt : array_like
Wind tilt
wsp_horizontal : bool
See wsp
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
v wind component
"""
wsp, dir, tilt = wsp[:], dir[:], tilt[:]
if wsp_horizontal:
w = tand(tilt) * wsp
u, v = wsp_dir2uv(wsp, dir, dir_ref)
else:
w = sind(tilt) * wsp
u, v = wsp_dir2uv(np.sqrt(wsp ** 2 - w ** 2), dir, dir_ref)
return np.array([u, v, w])
def xyz2uvw(x, y, z, left_handed=True):
"""Convert sonic x,y,z measurements to u,v,w wind components
Parameters
----------
x : array_like
Sonic x component
y : array_like
Sonic x component
z : array_like
Sonic x component
left_handed : boolean
if true (default), xyz are defined in left handed coodinate system (default for some sonics)
if false, xyz are defined in normal right handed coordinate system
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
w wind component
"""
x, y, z = map(np.array, [x, y, z])
if left_handed:
y *= -1
theta = deg(np.arctan2(np.mean(y), np.mean(x)))
SV = cosd(theta) * y - sind(theta) * x
SUW = cosd(theta) * x + sind(theta) * y
#% rotation around y of tilt
tilt = deg(np.arctan2(np.mean(z), np.mean(SUW)))
SU = SUW * cosd(tilt) + z * sind(tilt);
SW = z * cosd(tilt) - SUW * sind(tilt);
return np.array([SU, SV, SW])
def rpm2rads(rpm):
return rpm * 2 * np.pi / 60
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero: Parallel to pitot tube. Positive: Flow from wind side (pressure side)
Pitot tube side slip angle [rad]. Zero: Parallel to pitot tube. Positive: Flow from root side
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component towards pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = -((np.abs(beta) > np.pi / 2) * 2 - 1) # +1 for |beta| < 90, -1 for |beta|>90
sign_vsy = np.sign(alpha) #+ for alpha > 0
sign_vsz = -np.sign(beta) #- for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def abvrel2xyz(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
x : parallel to pitot tube, direction pitot tube root to tip, i.e. normal flow gives negative x\n
y : component in alpha plane
z : component in beta plane
For typical usage where pitot tube is mounted on leading edge:\n
x: Opposite rotational direction\n
y: Direction of mean wind\n
z: From blade root to tip\n
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero for flow towards pitot tube. Positive around z-axis. I.e.
negative alpha (normal flow) gives positive y component
beta : array_like
Pitot tube side slip angle [rad]. Zero for flow towards pitot tube. Positive around y-axis. I.e.
Positive beta (normal flow due to expansion and position in front of blade) gives positive z
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component away from pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = ((np.abs(beta) > np.pi / 2) * 2 - 1) # -1 for |beta| < 90, +1 for |beta|>90
sign_vsy = -np.sign(alpha) #- for alpha > 0
sign_vsz = np.sign(beta) # for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return np.array([x, y, z]).T