Newer
Older
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from builtins import range
from future import standard_library
standard_library.install_aliases()
import numpy as np
class AtTimeFile(object):
"""Loads an at time file generated by HAWC2
Functions are generated for each sensor in the file from the template:
twist(36, curved_length=True) # Twist 36m from the root along the (curved) center line
twist(36) # Twist at radius 36m (Straight line radius, nondim. with bladetip_radius which must be specified in constructor)
twist() # Twist at all aerodynamic calculation points
>>> at = AtTimeFile("at.dat", 86.3655) # load file
>>> at.attribute_names # Attribute names
>>> at[:3,1]) # first 3 twist rows
[-14.5 -14.5002 -14.5007]
>>> at.twist()[:3]) # Twist first 3 twist rows
[-14.5 -14.5002 -14.5007]
>>> at.twist(36, curved_length=True) # Twist at curved_length = 36 (interpolated)
>>> at.twist(36) # Twist at radius = 36 (interpolated)
def __init__(self, filename, bladetip_radius=None):
"""
Parameters
----------
filename : string
Filename
bladetip_radius : int, float or None, optional
Radius of blade tip. Used to convert from curved length to radius
"""
self.blade_radius = bladetip_radius
with open(filename, encoding='utf-8') as fid:
atttribute_name_line = [l.strip().startswith("# Radius_s") for l in lines].index(True)
#self.attribute_names = lines[atttribute_name_line].lower().replace("#", "").split()
self.attribute_names = [n.strip() for n in lines[atttribute_name_line].lower().split("#")[1:]]
data = np.array([[float(l) for l in lines[i].split() ] for i in range(atttribute_name_line+1, len(lines))])
def values(l=None, curved_length=False):
assert curved_length==True or curved_length==False, "Curved length must be boolean, but is %s"%curved_length
if curved_length:
return np.interp(l, self.data[:, 0], self.data[:, column])
else:
assert self.blade_radius is not None, "bladetip_radius must be specified in __init__ when requesting value of radius (alternatively you can request for curved_length)"
return np.interp(l/self.blade_radius, self.data[:, 0]/self.data[-1, 0], self.data[:, column])
return values
for column, att_name in enumerate(self.attribute_names):
setattr(self, att_name, func_factory(column))
def radius_curved_ac(self, radius=None):
"""Radius (curved distance) of aerodynamic calculation point(s)
Parameters
----------
radius : int or float, optional
- if None (default): Radius of calculation points\n
- if int or float: Radius of calculation point nearest radius
Returns
-------
radius : float or array_like
Radius of calculation points or radius of calculation point nearest radius
"""
if radius is None:
else:
return self.radius_s()[np.argmin(np.abs(self.radius_s() - radius))]
def value(self, radius, column):
return np.interp(radius, self.data[:, 0], self.data[:, column])
def __getitem__(self, subset):
return self.data[subset]
if __name__ == "__main__":
at = AtTimeFile(r"tests/test_files/at.dat", 86.3655) # load file
at = AtTimeFile(r'U:\hama\HAWC2-AVATAR\res/avatar-7ntm-scaled-rad.dat')
at.attribute_names # Attribute names
at[:3,1] # first 3 twist rows
print (len(at.attribute_names))
print ("\n".join(at.attribute_names))
print (at.data.shape)
#at.twist()[:3] # Twist first 3 twist rows
#print (at.twist(36, curved_length=True)) # Twist at curved_length = 36 (interpolated)
#print (at.twist(36)) # Twist at 36 (interpolated)