Newer
Older
'''
Created on 3. maj 2017
@author: mmpe
'''
import numpy as np
from wetb.hawc2.at_time_file import AtTimeFile
from wetb.hawc2.pc_file import PCFile
from wetb.hawc2.htc_file import HTCFile
from scipy.interpolate.interpolate import interp1d
import os
from wetb.utils.geometry import rad
from wetb.hawc2.st_file import StFile
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# class BladeInfo(object):
# def twist(self, radius=None):
# """Aerodynamic twist [deg]. Negative when leading edge is twisted towards wind(opposite to normal definition)\n
#
# Parameters
# ---------
# radius : float or array_like, optional
# radius [m] of interest
# If None (default) the twist of all points are returned
#
# Returns
# -------
# twist [deg] : float
# """
# raise NotImplementedError()
#
# def chord(self, radius=None):
# """Aerodynamic chord
#
# Parameters
# ---------
# radius : float or array_like, optional
# radius [m] of interest
# If None (default) the twist of all points are returned
#
# Returns
# -------
# chord [m] : float
# """
# raise NotImplementedError()
#
#
#
# def c2nd(self, radius_nd):
# """Return center line position
#
# Parameters
# ---------
# radius_nd : float or array_like, optional
# non dimensional radius
#
# Returns
# -------
# x,y,z : float
# """
"""Provide HAWC2 info about a blade
From AE file:
- chord(radius=None, set_nr=1):
- thickness(radius=None, set_nr=1)
- radius_ae(radius=None, set_nr=1)
From PC file
- CL(radius, alpha, ae_set_nr=1)
- CD(radius, alpha, ae_set_nr=1)
- CM(radius, alpha, ae_set_nr=1)
From at_time_filename
- attribute_names
- xxx(radius=None, curved_length=None) # xxx for each attribute name
- radius_curved_ac(radius=None) # Curved length of nearest/all aerodynamic calculation points
From ST file
- radius_st(radius=None, mset=1, set=1)
- xxx(radius=None, mset=1, set=1) # xxx for each of r, m, x_cg,y_cg, ri_x, ri_y, xs, ys, E, G, Ix, Iy, K, kx, ky, A, pitch, xe, ye
with template
"""
def __init__(self, htcfile, ae_filename=None, pc_filename=None, at_time_filename=None, blade_name=None):
if isinstance(htcfile, str):
assert htcfile.lower().endswith('.htc')
htcfile = HTCFile(htcfile)
at_time_filename = at_time_filename or ("output_at_time" in htcfile and os.path.join(htcfile.modelpath, htcfile.output_at_time.filename[0] + ".dat"))
pc_filename = pc_filename or os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0])
ae_filename = ae_filename or os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0])
#mainbodies = [s[k] for k in s.keys() if s[k].name_ == "main_body"]
#self.mainbody_blade = [mb for mb in mainbodies if mb.name[0] == blade_name][0]
if os.path.isfile(pc_filename) and os.path.isfile(ae_filename):
PCFile.__init__(self, pc_filename, ae_filename)
blade_radius = self.ae_sets[1][-1,0]
if os.path.isfile(at_time_filename):
AtTimeFile.__init__(self, at_time_filename, blade_radius)
self.curved_length = self.radius_curved_ac()[-1]
else:
raise NotImplementedError
#z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
#self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
self.hawc2_splines_data = self.hawc2_splines()
@property
def c2def(self):
if not hasattr(self, "_c2def"):
self._c2def = np.array([v.values[1:5] for v in self.htcfile.blade_c2_def if v.name_ == "sec"])
return self._c2def
def c2nd(self, l_nd, curved_length=True):
curve_l_nd, x, y, z, twist = self.hawc2_splines_data
if curved_length:
l_nd = (np.max([np.min([l_nd, np.ones_like(l_nd)], 0), np.zeros_like(l_nd) + self.c2def[0, 2] / self.c2def[-1, 2]], 0))
return np.array([np.interp(l_nd, curve_l_nd, xyz) for xyz in [x,y,z, twist]]).T
else:
l_nd = (np.max([np.min([l_nd, np.ones_like(l_nd)], 0), np.zeros_like(l_nd)], 0))
return np.array([np.interp(l_nd, z/z[-1], xyz) for xyz in [x,y,z, twist]]).T
def c2(self, l, curved_length=True):
if curved_length:
L = self.curved_length
else:
L = self.c2def[-1,2]
return self.c2nd(l/L, curved_length)
curve_l = np.r_[0, np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))]
curve_l_nd = curve_l / curve_l[-1]
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def akima(x, y):
n = len(x)
var = np.zeros((n + 3))
z = np.zeros((n))
co = np.zeros((n, 4))
for i in range(n - 1):
var[i + 2] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
var[n + 1] = 2 * var[n] - var[n - 1]
var[n + 2] = 2 * var[n + 1] - var[n]
var[1] = 2 * var[2] - var[3]
var[0] = 2 * var[1] - var[2]
for i in range(n):
wi1 = abs(var[i + 3] - var[i + 2])
wi = abs(var[i + 1] - var[i])
if (wi1 + wi) == 0:
z[i] = (var[i + 2] + var[i + 1]) / 2
else:
z[i] = (wi1 * var[i + 1] + wi * var[i + 2]) / (wi1 + wi)
for i in range(n - 1):
dx = x[i + 1] - x[i]
a = (z[i + 1] - z[i]) * dx
b = y[i + 1] - y[i] - z[i] * dx
co[i, 0] = y[i]
co[i, 1] = z[i]
co[i, 2] = (3 * var[i + 2] - 2 * z[i] - z[i + 1]) / dx
co[i, 3] = (z[i] + z[i + 1] - 2 * var[i + 2]) / dx ** 2
co[n - 1, 0] = y[n - 1]
co[n - 1, 1] = z[n - 1]
co[n - 1, 2] = 0
co[n - 1, 3] = 0
return co
def coef2spline(s, co):
x, y = [], []
for i, c in enumerate(co.tolist()[:-1]):
p = np.poly1d(c[::-1])
z = np.linspace(0, s[i + 1] - s[i ], 10, endpoint=i >= co.shape[0] - 2)
x.extend(s[i] + z)
y.extend(p(z))
x, y, z, twist = [coef2spline(curve_l_nd, akima(curve_l_nd, self.c2def[:, i]))[1] for i in range(4)]
curve_l_nd = coef2spline(curve_l_nd, akima(curve_l_nd, self.c2def[:, 0]))[0]
return curve_l_nd, x, y, z, twist
def xyztwist(self, l=None, curved_length=False):
"""Return splined x,y,z and twist
Parameters
----------
l : int, float, arraylike or None, optional
Position of interest, seee curved_length\n
If None (default) all x, y, z, and twist defined in c2def
curved_length : bool, optional
- If False: l is z coordinate of section
- If True: l is curved length
Returns
-------
x,y,z,twist
"""
if l is None:
#curved_length = np.cumsum(np.sqrt((np.diff(self.c2nd(np.linspace(0,1,100)),1,0)[:,:3]**2).sum(1)))
return self.c2nd(l/self.radius_curved_ac()[-1])
# z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
# assert np.all(l>=curved_length[0]) and np.all(l<=curved_length[-1])
# return self.c2nd(r_nd[np.argmin(np.abs(curved_length-l))+1])
else:
assert np.all(l>=self.c2def[0,2]) and np.all(l<=self.c2def[-1,2])
return self.c2nd(l/self.c2def[-1, 2])
class H2BladeInfo(H2aeroBladeInfo):
"""Provide HAWC2 info about a blade
From AE file:
- chord(radius=None, set_nr=1):
- thickness(radius=None, set_nr=1)
- radius_ae(radius=None, set_nr=1)
From PC file
- CL(radius, alpha, ae_set_nr=1)
- CD(radius, alpha, ae_set_nr=1)
- CM(radius, alpha, ae_set_nr=1)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
From at_time_filename
- attribute_names
- xxx(radius=None, curved_length=None) # xxx for each attribute name
- radius_curved_ac(radius=None) # Curved length of nearest/all aerodynamic calculation points
From ST file
- radius_st(radius=None, mset=1, set=1)
- xxx(radius=None, mset=1, set=1) # xxx for each of r, m, x_cg,y_cg, ri_x, ri_y, xs, ys, E, G, Ix, Iy, K, kx, ky, A, pitch, xe, ye
with template
"""
def __init__(self, htcfile, ae_filename=None, pc_filename=None, at_time_filename=None, st_filename=None, blade_name=None):
if isinstance(htcfile, str):
htcfile = HTCFile(htcfile)
s = htcfile.new_htc_structure
# at_time_filename = at_time_filename or ("output_at_time" in htcfile and os.path.join(htcfile.modelpath, htcfile.output_at_time.filename[0] + ".dat"))
# pc_filename = pc_filename or os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0])
# ae_filename = ae_filename or os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0])
#
mainbodies = [s[k] for k in s.keys() if s[k].name_ == "main_body"]
if blade_name is None:
blade_name = htcfile.aero.link[2]
self.mainbody_blade = [mb for mb in mainbodies if mb.name[0] == blade_name][0]
H2aeroBladeInfo.__init__(self, htcfile, ae_filename=ae_filename, pc_filename=pc_filename, at_time_filename=at_time_filename, blade_name=blade_name)
# def __init__(self, htcfile, ae_filename=None, pc_filename=None, at_time_filename=None, st_filename=None, blade_name=None):
#
# if isinstance(htcfile, str):
# assert htcfile.lower().endswith('.htc')
# htcfile = HTCFile(htcfile)
#
# blade_name = blade_name or htcfile.aero.link[2]
st_filename = st_filename or os.path.join(htcfile.modelpath, self.mainbody_blade.timoschenko_input.filename[0])
#
# if os.path.isfile(pc_filename) and os.path.isfile(ae_filename):
# PCFile.__init__(self, pc_filename, ae_filename)
# blade_radius = self.ae_sets[1][-1,0]
#
if os.path.isfile(st_filename):
StFile.__init__(self, st_filename)
# if os.path.isfile(at_time_filename):
# AtTimeFile.__init__(self, at_time_filename, blade_radius)
# self.curved_length = self.radius_curved_ac()[-1]
# else:
# raise NotImplementedError
# #z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
# #self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
#
# self.c2def = np.array([v.values[1:5] for v in mainbody_blade.c2_def if v.name_ == "sec"])
#
# self.hawc2_splines_data = self.hawc2_splines()
@property
def c2def(self):
if not hasattr(self, "_c2def"):
self._c2def = np.array([v.values[1:5] for v in self.mainbody_blade.c2_def if v.name_ == "sec"])
return self._c2def
#
# class H2aeroBladeInfo(H2BladeInfo):
#
# def __init__(self, at_time_filename, ae_filename, pc_filename, htc_filename):
# """
# at_time_filename: file name of at time file containing twist and chord data
# """
# PCFile.__init__(self, pc_filename, ae_filename)
# blade_radius = self.ae_sets[1][-1,0]
# AtTimeFile.__init__(self, at_time_filename, blade_radius)
#
# assert('twist' in self.attribute_names)
# htcfile = HTCFile(htc_filename)
#
#
# self.c2def = np.array([v.values[1:5] for v in htcfile.blade_c2_def if v.name_ == "sec"])
# #self._c2nd = interp1d(self.c2def[:, 2] / self.c2def[-1, 2], self.c2def[:, :3], axis=0, kind='cubic')
#
# ac_radii = self.radius_curved_ac()
# self.hawc2_splines_data = self.hawc2_splines()
# self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
#
# # c2_axis_length = np.r_[0, np.cumsum(np.sqrt((np.diff(self.c2def[:, :3], 1, 0) ** 2).sum(1)))]
# # self._c2nd = interp1d(c2_axis_length / c2_axis_length[-1], self.c2def[:, :3], axis=0, kind='cubic')
# #self._c2nd = interp1d(self.c2def[:,2]/self.c2def[-1,2], self.c2def[:, :3], axis=0, kind='cubic')
# #
# # def c2nd(self, r_nd):
# # r_nd_min = np.zeros_like(r_nd) + self.c2def[0, 2] / self.c2def[-1, 2]
# # r_nd_max = np.ones_like(r_nd)
# # r_nd = np.max([np.min([r_nd, r_nd_max], 0), r_nd_min], 0)
# # return self._c2nd(r_nd)
#