Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 14:12:58 2014
@author: dave
"""
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import range
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object
import os
import re
import numpy as np
import pandas as pd
from wetb.prepost import (mplutils, misc)
def __init__(self, name='dummy'):
self.__name__ = name
regex_units = re.compile('(\\[.*?\\])')
def ReadFileHAWCStab2Header(fname):
"""
Read a file with a weird HAWCStab2 header that starts with a #, and
includes the column number and units between square brackets.
"""
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def get_lines(fname):
# get the line that contains the header/column names and the first
# line that holds the data
with open(fname) as f:
line_header = f.readline()
line_data = f.readline()
# sometimes there are more header lines. The header is always on the
# last of the lines marked with #
while line_data[:2].strip() == '#':
line_header = line_data
line_data = f.readline()
return line_header, line_data
def get_col_widths(line):
# it is very annoying that various files can have various column widths
# also, the first column is one character wider than the rest
i0 = re.search(r'\S',line).start()
i1_col1 = line[i0:].find(' ') + i0
# number of columns can also be different (gradients or not, node displ)
nr_cols = int(round(len(line)/i1_col1, 0))
colwidths = [i1_col1+1] + [i1_col1]*(nr_cols-1)
return colwidths
def get_col_names(line, colwidths):
# because sometimes there are no spaces between the header of each column
# sanitize the headers
ci = np.array([0] + colwidths).cumsum()
# remember zero based indexing
ci[1:] = ci[1:] - 1
columns = []
for i in range(len(ci)-1):
# also lose the index in the header
colname = line[ci[i]:ci[i+1]][:-2].replace('#', '').strip()
columns.append(colname)
return columns
line_header, line_data = get_lines(fname)
colwidths = get_col_widths(line_data)
columns = get_col_names(line_header, colwidths)
# gradients have duplicate columns: set for with wake updated
# and another with frozen wake assumption, append _fw to the columns
# used to indicate frozen wake gradients
if 'dQ/dt [kNm/deg]' in columns:
i1 = columns.index('dQ/dt [kNm/deg]')
if i1 > -1:
i2 = columns.index('dQ/dt [kNm/deg]', i1+1)
if i2 > i1:
for i in range(i2, len(columns)):
columns[i] = columns[i].replace(' [', '_fw [')
df = pd.read_fwf(fname, widths=colwidths, comment='#', header=None,
names=columns)
units = regex_units.findall(''.join(columns))
return df, units
class InductionResults(object):
"""Column width can vary between versions and with/withouth gradient in
output. Use get_col_width() for automatic detection.
"""
def __init__(self, colwidth=None):
"""with gradients currently ind has columns width of 28 instead of 14!
"""
self.cw = colwidth
def get_col_width(self, fname):
# figure out column width
with open(fname) as fid:
# line1 contains the header
line1 = fid.readline()
# line2 contains the numerical data
line2 = fid.readline()
# it is very annoying that various files can have various column widths
# also, the first column is one character wider than the rest
i0 = re.search(r'\S',line2).start()
self.i1_col1 = line2[i0:].find(' ') + i0
# number of columns can also be different (gradients or not, node displ)
nr_cols = int(round(len(line2)/self.i1_col1, 0))
self.colwidths = [self.i1_col1+1] + [self.i1_col1]*(nr_cols-1)
# because sometimes there are no spaces between the header of each column
# sanitize the headers
ci = np.array([0] + self.colwidths).cumsum()
# remember zero based indexing
ci[1:] = ci[1:] - 1
self.columns = []
for i in range(len(ci)-1):
# also lose the index in the header
colname = line1[ci[i]:ci[i+1]][:-2].replace('#', '').strip()
self.columns.append(colname)
if self.cw is None:
self.get_col_width(fname)
self.wsp = int(fname.split('_u')[-1][:-4]) / 1000.0
# self.df_data = pd.read_fwf(fname, header=0, widths=self.colwidths)
self.df_data = pd.read_fwf(fname, skiprows=0, widths=self.colwidths)
# we can not rely on read_fwf for the column names since for some
# columns there is no space between one column and the next one.
self.df_data.columns = self.columns
class results(object):
"""
Loading HAWCStab2 result files
"""
def __init__(self):
pass
def load_pwr(self, fname):
pwr = np.loadtxt(fname)
res = dummy()
res.wind = pwr[:,0]
res.power = pwr[:,1]
res.thrust = pwr[:,2]
res.cp = pwr[:,3]
res.ct = pwr[:,4]
res.pitch_deg = pwr[:,8]
res.rpm = pwr[:,9]
return res
def load_pwr_df(self, fname):
return ReadFileHAWCStab2Header(fname)
def load_cmb(self, fname):
# aero-(servo)-elastic results for HS2>=2.14 have real_eig as 3th set
with open(fname) as f:
header = f.readline().replace('\n', '')
cmb = np.loadtxt(f)
# first column header has the units of the type of opearing points
cols = misc.remove_items(header.split(']')[1].split(' '), '')
nrmodes = np.array([int(k) for k in cols]).max()
# when there is only data for one operating condition we only have one
# row and consequently only a 1D array
if len(cmb.shape) == 1:
cmb = cmb.reshape( (1, cmb.shape[0]) )
wind = cmb[:,0]
freq = cmb[:,1:nrmodes+1]
damp = cmb[:,nrmodes+1:nrmodes*2+1]
real_eig = None
if cmb.shape[1] > nrmodes*2+1:
real_eig = cmb[:,nrmodes*2+1:]
return wind, freq, damp, real_eig
def load_cmb_df(self, fname):
# index name can be rotor speed or wind speed
with open(fname) as f:
header = f.readline()
oper_name = header.split('1')[0].strip().replace('#', '').lower()
oper_name = oper_name.replace(' ', '').replace('[', '_')[:-1]
oper_name = oper_name.replace('/', '')
speed, freq, damp, real_eig = self.load_cmb(fname)
mods = freq.shape[1]
ops = freq.shape[0]
df = pd.DataFrame(columns=[oper_name, 'Fd_hz', 'damp_ratio', 'mode'])
df['Fd_hz'] = freq.flatten()
df['damp_ratio'] = damp.flatten()
if real_eig is not None:
df['real_eig'] = real_eig.flatten()
# now each mode number is a row so that means that each operating
# point is now repeated as many times as there are modes
df[oper_name] = speed.repeat(mods)
modes = np.arange(1, mods+1, 1)
df['mode'] = modes.reshape((1,mods)).repeat(ops, axis=0).flatten()
return df
def load_frf(self, fname, nr_inputs=3):
frf = np.loadtxt(fname)
self.nr_outputs = ((frf.shape[1] - 1) / 2) / nr_inputs
self.nr_inputs = nr_inputs
return frf
def load_ind(self, fname, colwidth=None):
"""for results withouth gradients, colwidth=14, otherwise 28. Set to
None to derive automatically.
"""
ind = InductionResults(colwidth=colwidth)
ind.read(fname)
return ind.df_data
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def load_amp(self, fname):
with open(fname) as f:
line = f.readline()
width = 14
nrcols = int((len(line)-1)/width)
# first columns has one extra character
# col nr1: rotor speed, col nr2: radius
widths = [width+1] + [width]*(nrcols-1)
# last line is empty
df = pd.read_fwf(fname, header=2, widths=widths, skipfooter=1)
units = regex_units.findall(''.join(df.columns))
# no column number in the column name
# since U_x, u_y, phase and theta will be repeated as many times as
# there are modes, add the mode number in the column name
columns = [k.replace('#', '').strip() for k in df.columns]
nrmodes = int((len(columns) - 2 )/6)
for k in range(nrmodes):
for i in range(6):
j = 2+k*6+i
columns[j] = columns[j].split('.')[0] + ' nr%i' % (k+1)
df.columns = columns
return df, units
def load_operation(self, fname):
operation = np.loadtxt(fname, skiprows=1)
# when the array is empty, set operation to an empty DataFrame
if len(operation) == 0:
cols = ['windspeed', 'pitch_deg', 'rotorspeed_rpm']
self.operation = pd.DataFrame(columns=cols)
return
# when there is only one data point, the array is 1D, we allways need
# a 2D array otherwise the columns become rows in the DataFrame
elif len(operation.shape) == 1:
operation = operation.reshape((1, operation.shape[0]))
try:
cols = ['windspeed', 'pitch_deg', 'rotorspeed_rpm']
self.operation = pd.DataFrame(operation, columns=cols)
except ValueError:
cols = ['windspeed', 'pitch_deg', 'rotorspeed_rpm', 'P_aero',
'T_aero']
self.operation = pd.DataFrame(operation, columns=cols)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def load_matrices(self, fpath, basename, operating_point=1,
control_mat=False, local_wind_mat=False):
"""Load HAWCStab2 State Space system matrices
The general file name format is:
BASENAMETYPE_ase_ops_OPERATING_POINT_NUMBER.dat
Where TYPE can be of the following:
* amat, bmat, bvmat, cmat, dmat, dvmat, emat, fmat, fvmat
Additionally, when including the control matrices:
* BASENAMETYPE_ops_OPERATING_POINT_NUMBER.dat
* TYPE: acmat, bcmat, ccmat, dcmat
Or when including local wind speed
* BASENAMETYPE_ase_ops_OPERATING_POINT_NUMBER.dat
* TYPE: bvmat_loc_v, dvmat_loc_v, fvmat_loc_v
Parameters
----------
fpath : str
basename : str
operating_point : int, default=1
Returns
-------
matrices : dict
"""
mnames = ['amat', 'bmat', 'bvmat', 'cmat', 'dmat', 'dvmat', 'emat',
'fmat', 'fvmat']
mnames_c = ['acmat', 'bcmat', 'ccmat', 'dcmat']
mnames_v = ['bvmat_loc_v', 'dvmat_loc_v', 'fvmat_loc_v']
if control_mat:
mnames += mnames_c
if local_wind_mat:
mnames += mnames_v
matrices = {}
ase_template = '{:s}{:s}_ase_ops_{:d}.dat'
ops_template = '{:s}{:s}_ops_{:d}.dat'
for mname in mnames:
rpl = (basename, mname, operating_point)
template = ase_template
if mname in mnames_c:
template = ops_template
fname = os.path.join(fpath, template.format(*rpl))
matrices[mname] = np.loadtxt(fname)
return matrices
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
def write_ae_sections_h2(self):
"""
Get the aerosection positions from the HS2 ind result file and
write them as outputs for HAWC2
"""
self.ind
def plot_pwr(self, figname, fnames, labels=[], figsize=(11,7.15), dpi=120):
results = []
if isinstance(fnames, list):
if len(fnames) > 4:
raise ValueError('compare up to maximum 4 HawcStab2 cases')
for fname in fnames:
results.append(self.load_pwr(fname))
# if the labels are not defined, take the file name
if len(labels) < len(fnames):
labels.append(os.path.basename(fname))
else:
results.append(self.load_pwr(fname))
colors = list('krbg')
symbols = list('o<+x')
alphas = [1.0, 0.9, 0.8, 0.75]
fig, axes = mplutils.subplots(nrows=2, ncols=2, figsize=figsize,
dpi=dpi, num=0)
for i, res in enumerate(results):
ax = axes[0,0]
ax.plot(res.wind, res.power, color=colors[i],
label='Power %s ' % labels[i],
marker=symbols[i], ls='-', alpha=alphas[i])
ax.set_title('Aerodynamic Power [kW]')#, RPM')
ax.plot(res.wind, res.pitch_deg, color=colors[i],
label='Pitch %s' % labels[i],
marker=symbols[i], ls='-', alpha=alphas[i])
ax.plot(res.wind, res.rpm, color=colors[i],
label='RPM %s ' % labels[i],
marker=symbols[i], ls='--', alpha=alphas[i])
ax.set_title('Pitch [deg], RPM')
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
ax = axes[1,0]
ax.plot(res.wind, res.thrust, color=colors[i], label=labels[i],
marker=symbols[i], ls='-', alpha=alphas[i])
ax.set_title('Thrust [kN]')
ax = axes[1,1]
ax.plot(res.wind, res.cp, label='$C_p$ %s ' % labels[i], ls='-',
color=colors[i], marker=symbols[i], alpha=alphas[i])
ax.plot(res.wind, res.ct, label='$C_t$ %s ' % labels[i], ls='--',
color=colors[i], marker=symbols[i], alpha=alphas[i])
ax.set_title('Power and Thrust coefficients [-]')
for ax in axes.ravel():
ax.legend(loc='best')
ax.grid(True)
ax.set_xlim([res.wind[0], res.wind[-1]])
fig.tight_layout()
print('saving figure: %s ... ' % figname, end='')
figpath = os.path.dirname(figname)
if not os.path.exists(figpath):
os.makedirs(figpath)
fig.savefig(figname)
fig.clear()
print('done!')
class ReadControlTuning(object):
def __init__(self):
"""
"""

Mads M. Pedersen
committed
pass
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def parse_line(self, line, controller):
split1 = line.split('=')
var1 = split1[0].strip()
try:
val1 = float(split1[1].split('[')[0])
attr = getattr(self, controller)
setattr(attr, var1, val1)
if len(split1) > 2:
var2 = split1[1].split(',')[1].strip()
val2 = float(split1[2].split('[')[0])
setattr(attr, var2, val2)
except IndexError:
pass
def read_parameters(self, fpath):
"""
Read the controller tuning file
===============================
"""
with open(fpath, "r") as f:
for i, line in enumerate(f):
if i == 0:
controller = 'pi_gen_reg1'
setattr(self, controller, dummy())
elif i == 2:
controller = 'pi_gen_reg2'
setattr(self, controller, dummy())
elif i == 6:
controller = 'pi_pitch_reg3'
setattr(self, controller, dummy())
elif i == 10:
controller = 'aero_damp'
setattr(self, controller, dummy())

Mads M. Pedersen
committed
else:
self.parse_line(line, controller)
# set some parameters to zero for the linear case, or when aerodynamic
# gain scheduling is not used
if not hasattr(self.pi_gen_reg2, 'Kd'):
setattr(self.pi_gen_reg2, 'Kd', 0.0)
if not hasattr(self.pi_pitch_reg3, 'Kd'):
setattr(self.pi_pitch_reg3, 'Kd', 0.0)
if not hasattr(self.pi_pitch_reg3, 'K2'):
setattr(self.pi_pitch_reg3, 'K2', 0.0)
if not hasattr(self.aero_damp, 'Kp2'):
setattr(self.aero_damp, 'Kp2', 0.0)
if not hasattr(self.aero_damp, 'Ko1'):
setattr(self.aero_damp, 'Ko1', 0.0)
if not hasattr(self.aero_damp, 'Ko2'):
setattr(self.aero_damp, 'Ko2', 0.0)
def parameters2tags(self):
"""Convert the tuning parameters into a dictionary whos keys are
compatible with tag names in a HAWC2 master file.
"""
tune_tags = {}
tune_tags['[pi_gen_reg1.K]'] = self.pi_gen_reg1.K
tune_tags['[pi_gen_reg2.I]'] = self.pi_gen_reg2.I
tune_tags['[pi_gen_reg2.Kp]'] = self.pi_gen_reg2.Kp
tune_tags['[pi_gen_reg2.Ki]'] = self.pi_gen_reg2.Ki
tune_tags['[pi_gen_reg2.Kd]'] = self.pi_gen_reg2.Kd
tune_tags['[pi_pitch_reg3.Kp]'] = self.pi_pitch_reg3.Kp
tune_tags['[pi_pitch_reg3.Ki]'] = self.pi_pitch_reg3.Ki
tune_tags['[pi_pitch_reg3.Kd]'] = self.pi_pitch_reg3.Kd
tune_tags['[pi_pitch_reg3.K1]'] = self.pi_pitch_reg3.K1
tune_tags['[pi_pitch_reg3.K2]'] = self.pi_pitch_reg3.K2
tune_tags['[aero_damp.Kp2]'] = self.aero_damp.Kp2
tune_tags['[aero_damp.Ko1]'] = self.aero_damp.Ko1
tune_tags['[aero_damp.Ko2]'] = self.aero_damp.Ko2
return tune_tags
if __name__ == '__main__':