Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 3 19:53:59 2014
@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import dict
from io import open as opent
from builtins import range
from builtins import str
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object
__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'
import os
import copy
import struct
import math
from time import time
import codecs
from itertools import chain
import scipy.integrate as integrate
import numpy as np
import pandas as pd
# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb.prepost import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
class LogFile(object):
"""Check a HAWC2 log file for errors.
"""
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# the total message list log:
self.MsgListLog = []
# a smaller version, just indication if there are errors:
self.MsgListLog2 = dict()
# specify which message to look for. The number track's the order.
# this makes it easier to view afterwards in spreadsheet:
# every error will have its own column
# error messages that appear during initialisation
self.err_init = {}
self.err_init[' *** ERROR *** Error in com'] = len(self.err_init)
self.err_init[' *** ERROR *** in command '] = len(self.err_init)
# *** WARNING *** A comma "," is written within the command line
self.err_init[' *** WARNING *** A comma ",'] = len(self.err_init)
# *** ERROR *** Not correct number of parameters
self.err_init[' *** ERROR *** Not correct '] = len(self.err_init)
# *** INFO *** End of file reached
self.err_init[' *** INFO *** End of file r'] = len(self.err_init)
# *** ERROR *** No line termination in command line
self.err_init[' *** ERROR *** No line term'] = len(self.err_init)
# *** ERROR *** MATRIX IS NOT DEFINITE
self.err_init[' *** ERROR *** MATRIX IS NO'] = len(self.err_init)
# *** ERROR *** There are unused relative
self.err_init[' *** ERROR *** There are un'] = len(self.err_init)
# *** ERROR *** Error finding body based
self.err_init[' *** ERROR *** Error findin'] = len(self.err_init)
# *** ERROR *** In body actions
self.err_init[' *** ERROR *** In body acti'] = len(self.err_init)
# *** ERROR *** Command unknown and ignored
self.err_init[' *** ERROR *** Command unkn'] = len(self.err_init)
# *** ERROR *** ERROR - More bodies than elements on main_body: tower
self.err_init[' *** ERROR *** ERROR - More'] = len(self.err_init)
# *** ERROR *** The program will stop
self.err_init[' *** ERROR *** The program '] = len(self.err_init)
# *** ERROR *** Unknown begin command in topologi.
self.err_init[' *** ERROR *** Unknown begi'] = len(self.err_init)
# *** ERROR *** Not all needed topologi main body commands present
self.err_init[' *** ERROR *** Not all need'] = len(self.err_init)
# *** ERROR *** opening timoschenko data file
self.err_init[' *** ERROR *** opening tim'] = len(self.err_init)
# *** ERROR *** Error opening AE data file
self.err_init[' *** ERROR *** Error openin'] = len(self.err_init)
# *** ERROR *** Requested blade _ae set number not found in _ae file
self.err_init[' *** ERROR *** Requested bl'] = len(self.err_init)
# Error opening PC data file
self.err_init[' Error opening PC data file'] = len(self.err_init)
# *** ERROR *** error reading mann turbulence
self.err_init[' *** ERROR *** error readin'] = len(self.err_init)
# *** INFO *** The DLL subroutine
self.err_init[' *** INFO *** The DLL subro'] = len(self.err_init)
# ** WARNING: FROM ESYS ELASTICBAR: No keyword
self.err_init[' ** WARNING: FROM ESYS ELAS'] = len(self.err_init)
# *** ERROR *** DLL ./control/killtrans.dll could not be loaded - error!
self.err_init[' *** ERROR *** DLL'] = len(self.err_init)
# *** ERROR *** The DLL subroutine
self.err_init[' *** ERROR *** The DLL subr'] = len(self.err_init)
# *** ERROR *** Mann turbulence length scale must be larger than zero!
# *** ERROR *** Mann turbulence alpha eps value must be larger than zero!
# *** ERROR *** Mann turbulence gamma value must be larger than zero!
self.err_init[' *** ERROR *** Mann turbule'] = len(self.err_init)
# *** WARNING *** Shear center x location not in elastic center, set to zero
self.err_init[' *** WARNING *** Shear cent'] = len(self.err_init)
# Turbulence file ./xyz.bin does not exist
self.err_init[' Turbulence file '] = len(self.err_init)
self.err_init[' *** WARNING ***'] = len(self.err_init)
self.err_init[' *** ERROR ***'] = len(self.err_init)
self.err_init[' WARNING'] = len(self.err_init)
self.err_init[' ERROR'] = len(self.err_init)
# error messages that appear during simulation
self.err_sim = {}
# *** ERROR *** Wind speed requested inside
self.err_sim[' *** ERROR *** Wind speed r'] = len(self.err_sim)
# Maximum iterations exceeded at time step:
self.err_sim[' Maximum iterations exceede'] = len(self.err_sim)
# Solver seems not to converge:
self.err_sim[' Solver seems not to conver'] = len(self.err_sim)
# *** ERROR *** Out of x bounds:
self.err_sim[' *** ERROR *** Out of x bou'] = len(self.err_sim)
# *** ERROR *** Out of limits in user defined shear field - limit value used
self.err_sim[' *** ERROR *** Out of limit'] = len(self.err_sim)
# TODO: error message from a non existing channel output/input
# add more messages if required...
self.init_cols = len(self.err_init)
self.sim_cols = len(self.err_sim)
self.header = None
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def readlog(self, fname, case=None, save_iter=False):
"""
"""
# open the current log file
with open(fname, 'r') as f:
lines = f.readlines()
# keep track of the messages allready found in this file
tempLog = []
tempLog.append(fname)
exit_correct, found_error = False, False
subcols_sim = 4
subcols_init = 2
# create empty list item for the different messages and line
# number. Include one column for non identified messages
for j in range(self.init_cols):
# 2 sub-columns per message: nr, msg
for k in range(subcols_init):
tempLog.append('')
for j in range(self.sim_cols):
# 4 sub-columns per message: first, last, nr, msg
for k in range(subcols_sim):
tempLog.append('')
# and two more columns at the end for messages of unknown origin
tempLog.append('')
tempLog.append('')
# if there is a cases object, see how many time steps we expect
if case is not None:
dt = float(case['[dt_sim]'])
time_steps = int(float(case['[time_stop]']) / dt)
iterations = np.ndarray( (time_steps+1,3), dtype=np.float32 )
else:
iterations = np.ndarray( (len(lines),3), dtype=np.float32 )
dt = False
iterations[:,0:2] = -1
iterations[:,2] = 0
# keep track of the time_step number
time_step, init_block = -1, True
# check for messages in the current line
# for speed: delete from message watch list if message is found
for j, line in enumerate(lines):
# all id's of errors are 27 characters long
msg = line[:27]
# remove the line terminator, this seems to take 2 characters
# on PY2, but only one in PY3
line = line.replace('\n', '')
# keep track of the number of iterations
if line[:12] == ' Global time':
time_step += 1
iterations[time_step,0] = float(line[14:40])
# for PY2, new line is 2 characters, for PY3 it is one char
iterations[time_step,1] = int(line[-6:])
# time step is the first time stamp
if not dt:
dt = float(line[15:40])
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# no need to look for messages if global time is mentioned
continue
elif line[:20] == ' Starting simulation':
init_block = False
elif init_block:
# if string is shorter, we just get a shorter string.
# checking presence in dict is faster compared to checking
# the length of the string
# first, last, nr, msg
if msg in self.err_init:
# icol=0 -> fname
icol = subcols_init*self.err_init[msg] + 1
# 0: number of occurances
if tempLog[icol] == '':
tempLog[icol] = '1'
else:
tempLog[icol] = str(int(tempLog[icol]) + 1)
# 1: the error message itself
tempLog[icol+1] = line
found_error = True
# find errors that can occur during simulation
elif msg in self.err_sim:
icol = subcols_sim*self.err_sim[msg]
icol += subcols_init*self.init_cols + 1
# in case stuff already goes wrong on the first time step
if time_step == -1:
time_step = 0
# 1: time step of first occurance
if tempLog[icol] == '':
tempLog[icol] = '%i' % time_step
# 2: time step of last occurance
tempLog[icol+1] = '%i' % time_step
# 3: number of occurances
if tempLog[icol+2] == '':
tempLog[icol+2] = '1'
else:
tempLog[icol+2] = str(int(tempLog[icol+2]) + 1)
# 4: the error message itself
tempLog[icol+3] = line
found_error = True
iterations[time_step,2] = 1
# method of last resort, we have no idea what message
elif line[:10] == ' *** ERROR' or line[:10]==' ** WARNING':
icol = subcols_sim*self.sim_cols
icol += subcols_init*self.init_cols + 1
# line number of the message
tempLog[icol] = j
# and message
tempLog[icol+1] = line
found_error = True
# in case stuff already goes wrong on the first time step
if time_step == -1:
time_step = 0
iterations[time_step,2] = 1
# simulation and simulation output time
if case is not None:
t_stop = float(case['[time_stop]'])
duration = float(case['[duration]'])
else:
t_stop = -1
duration = -1
# see if the last line holds the sim time
if line[:15] == ' Elapsed time :':
exit_correct = True
elapsed_time = float(line[15:-1])
tempLog.append( elapsed_time )
# in some cases, Elapsed time is not given, and the last message
# might be: " Closing of external type2 DLL"
elif line[:20] == ' Closing of external':
exit_correct = True
elapsed_time = iterations[time_step,0]
tempLog.append( elapsed_time )
elif np.allclose(iterations[time_step,0], t_stop):
exit_correct = True
elapsed_time = iterations[time_step,0]
tempLog.append( elapsed_time )
else:
elapsed_time = -1
tempLog.append('')
# give the last recorded time step
tempLog.append('%1.11f' % iterations[time_step,0])
# simulation and simulation output time
tempLog.append('%1.01f' % t_stop)
tempLog.append('%1.04f' % (t_stop/elapsed_time))
tempLog.append('%1.01f' % duration)
# as last element, add the total number of iterations
itertotal = np.nansum(iterations[:,1])
tempLog.append('%i' % itertotal)
# the delta t used for the simulation
if dt:
tempLog.append('%1.7f' % dt)
else:
tempLog.append('failed to find dt')
# number of time steps
tempLog.append('%i' % len(iterations) )
# if the simulation didn't end correctly, the elapsed_time doesn't
# exist. Add the average and maximum nr of iterations per step
# or, if only the structural and eigen analysis is done, we have 0
try:
ratio = float(elapsed_time)/float(itertotal)
tempLog.append('%1.6f' % ratio)
except (UnboundLocalError, ZeroDivisionError, ValueError) as e:
tempLog.append('')
# when there are no time steps (structural analysis only)
try:
tempLog.append('%1.2f' % iterations[:,1].mean())
tempLog.append('%1.2f' % iterations[:,1].max())
except ValueError:
tempLog.append('')
tempLog.append('')
# save the iterations in the results folder
if save_iter:
fiter = os.path.basename(fname).replace('.log', '.iter')
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
fmt = ['%12.06f', '%4i', '%4i']
if case is not None:
fpath = os.path.join(case['[run_dir]'], case['[iter_dir]'])
# in case it has subdirectories
for tt in [3,2,1]:
tmp = os.path.sep.join(fpath.split(os.path.sep)[:-tt])
if not os.path.exists(tmp):
os.makedirs(tmp)
if not os.path.exists(fpath):
os.makedirs(fpath)
np.savetxt(fpath + fiter, iterations, fmt=fmt)
else:
logpath = os.path.dirname(fname)
np.savetxt(os.path.join(logpath, fiter), iterations, fmt=fmt)
# append the messages found in the current file to the overview log
self.MsgListLog.append(tempLog)
self.MsgListLog2[fname] = [found_error, exit_correct]
def _msglistlog2csv(self, contents):
"""Write LogFile.MsgListLog to a csv file. Use LogFile._header to
create a header.
"""
for k in self.MsgListLog:
for n in k:
contents = contents + str(n) + ';'
# at the end of each line, new line symbol
contents = contents + '\n'
return contents
def csv2df(self, fname):
"""Read a csv log file analysis and convert to a pandas.DataFrame
"""
colnames, min_itemsize, dtypes = self.headers4df()
df = pd.read_csv(fname, header=0, names=colnames, sep=';', )
for col, dtype in dtypes.items():
df[col] = df[col].astype(dtype)
# replace nan with empty for str columns
if dtype == str:
df[col] = df[col].str.replace('nan', '')
return df
def _header(self):
"""Header for log analysis csv file
"""
# write the results in a file, start with a header
contents = 'file name;' + 'nr;msg;'*(self.init_cols)
contents += 'first_tstep;last_tstep;nr;msg;'*(self.sim_cols)
contents += 'lnr;msg;'
# and add headers for elapsed time, nr of iterations, and sec/iteration
contents += 'Elapsted time;last time step;Simulation time;'
contents += 'real sim time;Sim output time;'
contents += 'total iterations;dt;nr time steps;'
contents += 'seconds/iteration;average iterations/time step;'
contents += 'maximum iterations/time step;\n'
return contents
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def headers4df(self):
"""Create header and a minimum itemsize for string columns when
converting a Log check analysis to a pandas.DataFrame
Returns
-------
header : list
List of column names as generated by WindIO.LogFile._header
min_itemsize : dict
Dictionary with column names as keys, and the minimum string lenght
as values.
dtypes : dict
Dictionary with column names as keys, and data types as values
"""
chain_iter = chain.from_iterable
colnames = ['file_name']
colnames.extend(list(chain_iter(('nr_%i' % i, 'msg_%i' % i)
for i in range(31))) )
gr = ('first_tstep_%i', 'last_step_%i', 'nr_%i', 'msg_%i')
colnames.extend(list(chain_iter( (k % i for k in gr)
for i in range(100,105,1))) )
colnames.extend(['nr_extra', 'msg_extra'])
colnames.extend(['elapsted_time',
'last_time_step',
'simulation_time',
'real_sim_time',
'sim_output_time',
'total_iterations',
'dt',
'nr_time_steps',
'seconds_p_iteration',
'mean_iters_p_time_step',
'max_iters_p_time_step',
'sim_id'])
dtypes = {}
# str and float datatypes for
msg_cols = ['msg_%i' % i for i in range(30)]
msg_cols.extend(['msg_%i' % i for i in range(100,105,1)])
dtypes.update({k:str for k in msg_cols})
# make the message/str columns long enough
min_itemsize = {'msg_%i' % i : 100 for i in range(30)}
# column names holding the number of occurances of messages
nr_cols = ['nr_%i' % i for i in range(30)]
nr_cols.extend(['nr_%i' % i for i in range(100,105,1)])
# other float values
nr_cols.extend(['elapsted_time', 'total_iterations'])
# NaN only exists in float arrays, not integers (NumPy limitation)
# so use float instead of int
dtypes.update({k:np.float64 for k in nr_cols})
return colnames, min_itemsize, dtypes
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""Read a HAWC2 result data file
Usage:
obj = LoadResults(file_path, file_name)
This class is called like a function:
HawcResultData() will read the specified file upon object initialization.
Available output:
obj.sig[timeStep,channel] : complete result file in a numpy array
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
obj.error_msg: is 'none' if everything went OK, otherwise it holds the
error
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos'] = pos
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""

David Verelst
committed
# ch_df columns, these are created by LoadResults._unified_channel_names
cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',

David Verelst
committed
'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr',
'direction'])
# start with reading the .sel file, containing the info regarding
# how to read the binary file and the channel information
def __init__(self, file_path, file_name, debug=False, usecols=None,
readdata=True):
self.debug = debug
# timer in debug mode
if self.debug:
start = time()
self.file_path = file_path
# remove .log, .dat, .sel extensions who might be accedental left
if file_name[-4:] in ['.htc', '.sel', '.dat', '.log']:
file_name = file_name[:-4]
# FIXME: since HAWC2 will always have lower case output files, convert
# any wrongly used upper case letters to lower case here
FileName = os.path.join(self.file_path, self.file_name)
ReadOnly = 0 if readdata else 1
super(LoadResults, self).__init__(FileName, ReadOnly=ReadOnly)
self.FileType = self.FileFormat[6:]
self.N = int(self.NrSc)
self.Nch = int(self.NrCh)
self.ch_details = np.ndarray(shape=(self.Nch, 3), dtype='<U100')
for ic in range(self.Nch):
self.ch_details[ic, 0] = self.ChInfo[0][ic]
self.ch_details[ic, 1] = self.ChInfo[1][ic]
self.ch_details[ic, 2] = self.ChInfo[2][ic]
self._unified_channel_names()
if readdata:
self.sig = super(LoadResults, self).__call__(ChVec=ChVec)
if self.debug:
stop = time() - start
print('time to load HAWC2 file:', stop, 's')
def reformat_sig_details(self):
"""Change HAWC2 output description of the channels short descriptive
strings, usable in plots
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
"""
# CONFIGURATION: mappings between HAWC2 and short good output:
change_list = []
change_list.append( ['original', 'new improved'] )
# change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
# change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
# change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
# change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
# change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
# change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
# change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )
change_list.append(['Mx coo: blade1', 'blade1 flap'])
change_list.append(['My coo: blade1', 'blade1 edge'])
change_list.append(['Mz coo: blade1', 'blade1 torsion'])
change_list.append(['Mx coo: blade2', 'blade2 flap'])
change_list.append(['My coo: blade2', 'blade2 edge'])
change_list.append(['Mz coo: blade2', 'blade2 torsion'])
change_list.append(['Mx coo: blade3', 'blade3 flap'])
change_list.append(['My coo: blade3', 'blade3 edeg'])
change_list.append(['Mz coo: blade3', 'blade3 torsion'])
change_list.append(['Mx coo: hub1', 'blade1 out-of-plane'])
change_list.append(['My coo: hub1', 'blade1 in-plane'])
change_list.append(['Mz coo: hub1', 'blade1 torsion'])
change_list.append(['Mx coo: hub2', 'blade2 out-of-plane'])
change_list.append(['My coo: hub2', 'blade2 in-plane'])
change_list.append(['Mz coo: hub2', 'blade2 torsion'])
change_list.append(['Mx coo: hub3', 'blade3 out-of-plane'])
change_list.append(['My coo: hub3', 'blade3 in-plane'])
change_list.append(['Mz coo: hub3', 'blade3 torsion'])
# this one will create a false positive for tower node nr1
change_list.append(['Mx coo: tower', 'tower top momemt FA'])
change_list.append(['My coo: tower', 'tower top momemt SS'])
change_list.append(['Mz coo: tower', 'yaw-moment'])
change_list.append(['Mx coo: chasis', 'chasis momemt FA'])
change_list.append(['My coo: chasis', 'yaw-moment chasis'])
change_list.append(['Mz coo: chasis', 'chasis moment SS'])
self.ch_details_new = np.ndarray(shape=(self.Nch, 3), dtype='<U100')
# approach: look for a specific description and change it.
# This approach is slow, but will not fail if the channel numbers change
# over different simulations
for ch in range(self.Nch):
# the change_list will always be slower, so this loop will be
# inside the bigger loop of all channels
for k in range(len(change_list)):
if change_list[k][0] == self.ch_details[ch, 0]:
self.ch_details_new[ch, 0] = change_list[k][1]
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# channel description should be unique, so delete current
# entry and stop looking in the change list
del change_list[k]
break
# self.ch_details_new = ch_details_new
def _unified_channel_names(self):
"""
Make certain channels independent from their index.
The unified channel dictionary ch_dict holds consequently named
channels as the key, and the all information is stored in the value
as another dictionary.
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
node numbers start with 0 at the root
element numbers start with 1 at the root
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos']
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
For many of the aero sensors:
'Cl', 'Cd', 'Alfa', 'Vrel'
key:
sensortype-blade_nr-pos
Cl-1-0.01
value:
ch_dict[tag]['sensortype']
ch_dict[tag]['blade_nr']
ch_dict[tag]['pos']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# save them in a dictionary, use the new coherent naming structure
# as the key, and as value again a dict that hols all the different
# classifications: (chi, channel nr), (coord, coord), ...
self.ch_dict = dict()
# some channel ID's are unique, use them
ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
ch_aerogrid = set(['a_grid', 'am_grid'])
# also safe as df
# cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
# 'component', 'pos', 'coord', 'sensortype', 'radius',
# 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
# 'azimuth', 'flap_nr'])
df_dict['unique_ch_name'] = []
# scan through all channels and see which can be converted
# to sensible unified name
for ch in range(self.Nch):
# remove empty values in the list
items = misc.remove_items(items, '')
dll = False
# be carefull, identify only on the starting characters, because
# the signal tag can hold random text that in some cases might
# trigger a false positive
# -----------------------------------------------------------------
# check for all the unique channel descriptions
if self.ch_details[ch,0].strip() in ch_unique:
channelinfo['units'] = self.ch_details[ch, 1]
channelinfo['sensortag'] = self.ch_details[ch, 2]
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# or in the long description:
# 0 1 2 3 4 5 6 and up
# MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT
coord = items[5]
bodyname = items[1].replace('Mbdy:', '')
# set nodenr to sortable way, include leading zeros
# node numbers start with 0 at the root
nodenr = '%03i' % int(items[3])
# skip the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'momentvec'
component = items[0][-1:len(items[0])]
# the tag only exists if defined
if len(items) > 6:
sensortag = ' '.join(items[6:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 and up
# Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT
coord = items[6]
bodyname = items[2].replace('Mbdy:', '')
nodenr = '%03i' % int(items[4])
# skipe the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'forcevec'
component = items[1][1]
if len(items) > 7:
sensortag = ' '.join(items[7:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 8
# State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade
# 0 1 2 3 4 5 6 7 8 9+
# State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label
# State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label
elif self.ch_details[ch,2].startswith('State'):
# or self.ch_details[ch,0].startswith('euler') \
# or self.ch_details[ch,0].startswith('ax') \
# or self.ch_details[ch,0].startswith('omega') \
# or self.ch_details[ch,0].startswith('proj'):
coord = items[8]
bodyname = items[3].replace('Mbdy:', '')
# element numbers start with 1 at the root
elementnr = '%03i' % int(items[5])
zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
# skip the attached the component
#sensortype = ''.join(items[0:2])
# or give the sensor type the same name as in HAWC2
sensortype = tmp[0]
if sensortype.startswith('State'):
sensortype += ' ' + tmp[1]
component = items[2]
if len(items) > 8:
sensortag = ' '.join(items[9:])
else:
sensortag = ''
# and tag it
pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# DLL CONTROL I/O
# there are two scenario's on how the channel description is formed
# the channel id is always the same though
# id for all three cases:
# DLL out 1: 3
# DLL inp 2: 3
# description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
# 0 1 2 3 4+
# yaw_control outvec 3 yaw_c input reference angle
# description case 2 ("dll inpvec 2 1" in htc output):
# 0 1 2 3 4 5 6+
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch, 0].startswith('bea'):
output_type = self.ch_details[ch, 0].split(' ')[1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch, 0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch, 2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
radius = dscr_list[-1]
# is this always valid?
# sometimes the units for aero sensors are wrong!
# there is no label option
# and tag it
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch, 0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch, 0].strip()[:5] == 'Induc':
items = self.ch_details[ch, 2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
coord = items[1].strip()
component = items[0][-2:]
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch, 2].startswith('Water'):
units = self.ch_details[ch, 1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch, 0].startswith('WSP gl.'):
units = self.ch_details[ch, 1]
direction = self.ch_details[ch, 0].split(',')[1]
tmp = self.ch_details[ch, 2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch, 0].startswith('WSP V'):
units = self.ch_details[ch, 1].strip()
direction = self.ch_details[ch, 0].split(' ')[1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch, 2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch, 0][:7] == 'setbeta':
units = self.ch_details[ch, 1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict['unique_ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(ch_name)
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1, :].max(axis=0)
stats['min'] = sig[i0:i1, :].min(axis=0)
stats['mean'] = sig[i0:i1, :].mean(axis=0)
stats['std'] = sig[i0:i1, :].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
"""Calculate statistics and equivalent loads for the current loaded
signal.
Parameters
----------
i0 : int, default=0
i1 : int, default=None
channels : list, default='all'
all channels are selected if set to 'all', otherwise define a list
using the unique channel defintions.
neq : int, default=1
no_bins : int, default=46
Return
------
statsdel : pd.DataFrame
Pandas DataFrame with the statistical parameters and the different
fatigue coefficients as columns, and channels as rows. As index the
unique channel name is used.
"""
stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
if statchans == 'all':
statchans = self.ch_df['unique_ch_name'].tolist()
statchis = self.ch_df['unique_ch_name'].index.values
else:
sel = self.ch_df['unique_ch_name']
statchis = self.ch_df[sel.isin(statchans)].index.values
if delchans == 'all':
delchans = self.ch_df['unique_ch_name'].tolist()
delchis = self.ch_df.index.values
else:
sel = self.ch_df['unique_ch_name']
delchis = self.ch_df[sel.isin(delchans)].index.values
# delchans has to be a subset of statchans!
if len(set(delchans) - set(statchans)) > 0:
raise ValueError('delchans has to be a subset of statchans')
tmp = np.ndarray((len(statchans), len(stats+m)))
tmp[:,:] = np.nan
m_cols = ['m=%i' % m_ for m_ in m]
statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
statsdel.index = statchans
datasel = self.sig[i0:i1,statchis]
time = self.sig[i0:i1,0]
statsdel['max'] = datasel.max(axis=0)
statsdel['min'] = datasel.min(axis=0)
statsdel['mean'] = datasel.mean(axis=0)
statsdel['std'] = datasel.std(axis=0)
statsdel['range'] = statsdel['max'] - statsdel['min']
statsdel['absmax'] = np.abs(datasel).max(axis=0)
statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)
if neq is None:
neq = self.sig[-1,0] - self.sig[0,0]
for chi, chan in zip(delchis, delchans):
signal = self.sig[i0:i1,chi]
eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
statsdel.loc[chan][m_cols] = eq
return statsdel
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype': 'state pos', 'component': 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)

David Verelst
committed
def save_chan_names(self, fname):
"""Save unique channel names to text file.
"""
channels = self.ch_df.ch_name.values
channels.sort()
np.savetxt(fname, channels, fmt='%-100s')
def save_channel_info(self, fname):
"""Save all channel info: unique naming + HAWC2 description from *.sel.
"""
p1 = self.ch_df.copy()
# but ignore the units column, we already have that
p2 = pd.DataFrame(self.ch_details,
columns=['Description1', 'units', 'Description2'])
# merge on the index
tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True)
tmp.to_excel(fname)
# for a fixed-with text format instead of csv
# header = ''.join(['%100s' % k for k in tmp.columns])
# header = ' windspeed' + header
# np.savetxt(fname, tmp.to_records(), header=header,
# fmt='% 01.06e ')
return tmp

David Verelst
committed
def load_chan_names(self, fname):
dtype = np.dtype('U100')
return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist()
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command. From HAWC2 12.3-beta and onwards, there are 7 header columns,
earlier version only have 3.
Parameters
----------
fname : str
header_lnr : int, default=3
Line number of the header (column names) (1-based counting).
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
# because the formatting is really weird, we need to sanatize it a bit
with opent(fname, 'r') as f:
# read the header from line 3
for k in range(7):
line = f.readline()
if line[0:12].lower().replace('#', '').strip() == 'radius_s':
header_lnr = k + 1
break
header = line.replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
data = np.loadtxt(fname, skiprows=header_lnr)
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
# Body data for body number : 3 with the name :nacelle
# Results: fd [Hz] fn [Hz] log.decr [%]
# Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = opent(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n', '').replace('\r', '').split(':')
# modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters
----------
file_path : str
file_name : str
debug : boolean, default=False
max_modes : int
Stop evaluating the result after max_modes number of modes have been
identified
Returns
-------
modes_arr : ndarray(3,n)
An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
decrement [%] for n different structural eigenmodes
"""
# 0 Version ID : HAWC2MB 11.3
# 1 ___________________________________________________________________
# 2 Structure eigenanalysis output
# 3 ___________________________________________________________________
# 4 Time : 13:46:59
# 5 Date : 28:11.2012
# 6 ___________________________________________________________________
# 7 Results: fd [Hz] fn [Hz] log.decr [%]
# 8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
# Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
FILE = opent(os.path.join(file_path, file_name))
lines = FILE.readlines()
FILE.close()
header_lines = 8
# we now the number of modes by having the number of lines
nrofmodes = len(lines) - header_lines
for i, line in enumerate(lines):
if i > max_modes:
# cut off the unused rest
break
# ignore the header
if i < header_lines:
continue
# split up mode nr from the rest
parts = line.split(':')
# get fd, fn and damping, but remove all empty items on the list
modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '')
return modes_arr
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
"""
"""
def __init__(self):
pass
def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
nr_vert=20, h_ME=500.0, fname=None, wdir=None):
"""
Parameters
----------
z_h : float
Hub height
r_blade_tip : float
Blade tip radius
a_phi : float, default=None
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
shear_exp : float, default=None
nr_vert : int, default=3
nr_hor : int, default=20
h_ME : float, default=500
Modified Ekman parameter. Take roughly 500 for off shore sites,
1000 for on shore sites.
fname : str, default=None
When specified, the HAWC2 user defined veer input file will be
written.
wdir : float, default=None
A constant veer angle, or yaw angle. Equivalent to setting the
wind direction. Angle in degrees.
Returns
-------
None
"""
x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
nr_hor=nr_hor)
if a_phi is not None:
phi_rad = self.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
assert len(phi_rad) == nr_vert
else:
nr_vert = len(z)
phi_rad = np.zeros((nr_vert,))
# add any yaw error on top of
if wdir is not None:
# because wdir cw positive, and phi veer ccw positive
phi_rad -= (wdir*np.pi/180.0)
u, v, w, xx, zz = self.decompose_veer(phi_rad, x, z)
# scale the shear on top of that
if shear_exp is not None:
shear = self.shear_powerlaw(zz, z_h, shear_exp)
uu = u*shear[:,np.newaxis]
vv = v*shear[:,np.newaxis]
ww = w*shear[:,np.newaxis]
# and write to a file
if fname is not None:
self.write_user_defined_shear(fname, uu, vv, ww, xx, zz)
def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
"""
Utility to create the coordinates of the wind field based on hub heigth
and blade length.
"""
# take 15% extra space after the blade tip
z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
# along the horizontal, coordinates with 0 at the rotor center
x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)
return x, z
def shear_powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = (1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h))
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
return a_phi * t1 * t2 * t3
def decompose_veer(self, phi_rad, x, z):
"""
Convert a veer angle into u, v, and w components, ready for the
HAWC2 user defined veer input file.
Paramters
---------
phi_rad : ndarray
veer angle in radians
method : str, default=linear
'linear' for a linear veer, 'ekman_mod' for modified ekman method
Returns
-------
u, v, w, v_coord, w_coord
"""
nr_hor = len(x)
nr_vert = len(z)
assert len(phi_rad) == nr_vert
tan_phi = np.tan(phi_rad)
# convert veer angles to veer components in v, u. Make sure the
# normalized wind speed remains 1!
# u = sympy.Symbol('u')
# v = sympy.Symbol('v')
# tan_phi = sympy.Symbol('tan_phi')
# eq1 = u**2.0 + v**2.0 - 1.0
# eq2 = (tan_phi*u/v) - 1.0
# sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
# # proposed solution is:
# u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
# v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
# # but that gives the sign switch wrong, simplify/rewrite to:
u = np.sqrt(1.0/(tan_phi**2 + 1.0))
v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
# verify they are actually the same but the sign:
# assert np.allclose(np.abs(u), np.abs(u2))
# assert np.allclose(np.abs(v), np.abs(v2))
u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
w_full = np.zeros((nr_vert, nr_hor))
return u_full, v_full, w_full, x, z
def load_user_defined_veer(self, fname):
"""
Load a user defined veer and shear file as used for HAWC2
Returns
-------
u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
"""
# read the header
with opent(fname) as f:
for i, line in enumerate(f.readlines()):
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
if line.strip()[0] != '#':
nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '')
nr_hor, nr_vert = int(nr_v), int(nr_w)
i_header = i
break
# u,v and w components on 2D grid
tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#',
max_rows=nr_vert*3)
if not tmp.shape == (nr_vert*3, nr_hor):
raise AssertionError('user defined shear input file inconsistent')
v_comp = tmp[:nr_vert,:]
u_comp = tmp[nr_vert:nr_vert*2,:]
w_comp = tmp[nr_vert*2:nr_vert*3,:]
# coordinates of the 2D grid
tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2,
max_rows=nr_hor+nr_vert)
if not tmp.shape == (nr_vert+nr_hor,):
raise AssertionError('user defined shear input file inconsistent')
v_coord = tmp[:nr_hor]
w_coord = tmp[nr_hor:]
phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi
return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
def write_user_defined_shear(self, fname, u, v, w, v_coord, w_coord,
fmt_uvw='% 08.05f', fmt_coord='% 8.02f'):
"""
"""
nr_hor = len(v_coord)
nr_vert = len(w_coord)
try:
assert u.shape == v.shape
assert u.shape == w.shape
assert u.shape[0] == nr_vert
assert u.shape[1] == nr_hor
except AssertionError:
raise ValueError('u, v, w shapes should be consistent with '
'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))
# and create the input file
with open(fname, 'wb') as fid:
fid.write(b'# User defined shear file\n')
fid.write(b'%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert))
h1 = b'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns'
fid.write(b'# v component, %s\n' % h1)
np.savetxt(fid, v, fmt=fmt_uvw, delimiter=' ')
fid.write(b'# u component, %s\n' % h1)
np.savetxt(fid, u, fmt=fmt_uvw, delimiter=' ')
fid.write(b'# w component, %s\n' % h1)
np.savetxt(fid, w, fmt=fmt_uvw, delimiter=' ')
h2 = b'# v coordinates (along the horizontal, nr_hor, 0 rotor center)'
fid.write(b'%s\n' % h2)
np.savetxt(fid, v_coord.reshape((v_coord.size, 1)), fmt=fmt_coord)
h3 = b'# w coordinates (zero is at ground level, height, nr_hor)'
fid.write(b'%s\n' % h3)
np.savetxt(fid, w_coord.reshape((w_coord.size, 1)), fmt=fmt_coord)
class WindProfiles(object):
def __init__(self):
pass
def logarithmic(self, z, z_ref, r_0):
return np.log10(z/r_0)/np.log10(z_ref/r_0)
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
def powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians as function of height
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) )
return a_phi * t1 * t2 * t3
class Turbulence(object):
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
def __init__(self):
pass
def read_hawc2(self, fpath, shape):
"""
Read the HAWC2 turbulence format
"""
fid = open(fpath, 'rb')
tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2])
turb = np.reshape(tmp, shape)
return turb
def read_bladed(self, fpath, basename):
fid = open(fpath + basename + '.wnd', 'rb')
R1 = struct.unpack('h', fid.read(2))[0]
R2 = struct.unpack('h', fid.read(2))[0]
turb = struct.unpack('i', fid.read(4))[0]
lat = struct.unpack('f', fid.read(4))[0]
rough = struct.unpack('f', fid.read(4))[0]
refh = struct.unpack('f', fid.read(4))[0]
longti = struct.unpack('f', fid.read(4))[0]
latti = struct.unpack('f', fid.read(4))[0]
vertti = struct.unpack('f', fid.read(4))[0]
dv = struct.unpack('f', fid.read(4))[0]
dw = struct.unpack('f', fid.read(4))[0]
du = struct.unpack('f', fid.read(4))[0]
halfalong = struct.unpack('i', fid.read(4))[0]
mean_ws = struct.unpack('f', fid.read(4))[0]
VertLongComp = struct.unpack('f', fid.read(4))[0]
LatLongComp = struct.unpack('f', fid.read(4))[0]
LongLongComp = struct.unpack('f', fid.read(4))[0]
Int = struct.unpack('i', fid.read(4))[0]
seed = struct.unpack('i', fid.read(4))[0]
VertGpNum = struct.unpack('i', fid.read(4))[0]
LatGpNum = struct.unpack('i', fid.read(4))[0]
VertLatComp = struct.unpack('f', fid.read(4))[0]
LatLatComp = struct.unpack('f', fid.read(4))[0]
LongLatComp = struct.unpack('f', fid.read(4))[0]
VertVertComp = struct.unpack('f', fid.read(4))[0]
LatVertComp = struct.unpack('f', fid.read(4))[0]
LongVertComp = struct.unpack('f', fid.read(4))[0]
points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3)
fid.close()
return points
def convert2bladed(self, fpath, basename, shape=(4096,32,32)):
"""
Convert turbulence box to BLADED format
"""
u = self.read_hawc2(fpath + basename + 'u.bin', shape)
v = self.read_hawc2(fpath + basename + 'v.bin', shape)
w = self.read_hawc2(fpath + basename + 'w.bin', shape)
# mean velocity components at the center of the box
v1, v2 = (shape[1]/2)-1, shape[1]/2
w1, w2 = (shape[2]/2)-1, shape[2]/2
ucent = (u[:, v1, w1] + u[:, v1, w2] + u[:, v2, w1] + u[:, v2, w2]) / 4.0
vcent = (v[:, v1, w1] + v[:, v1, w2] + v[:, v2, w1] + v[:, v2, w2]) / 4.0
wcent = (w[:, v1, w1] + w[:, v1, w2] + w[:, v2, w1] + w[:, v2, w2]) / 4.0
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
# FIXME: where is this range 351:7374 coming from?? The original script
# considered a box of lenght 8192
umean = np.mean(ucent[351:7374])
vmean = np.mean(vcent[351:7374])
wmean = np.mean(wcent[351:7374])
ustd = np.std(ucent[351:7374])
vstd = np.std(vcent[351:7374])
wstd = np.std(wcent[351:7374])
# gives a slight different outcome, but that is that significant?
# umean = np.mean(u[351:7374,15:17,15:17])
# vmean = np.mean(v[351:7374,15:17,15:17])
# wmean = np.mean(w[351:7374,15:17,15:17])
# this is wrong since we want the std on the center point
# ustd = np.std(u[351:7374,15:17,15:17])
# vstd = np.std(v[351:7374,15:17,15:17])
# wstd = np.std(w[351:7374,15:17,15:17])
iu = np.zeros(shape)
iv = np.zeros(shape)
iw = np.zeros(shape)
iu[:, :, :] = (u - umean)/ustd*1000.0
iv[:, :, :] = (v - vmean)/vstd*1000.0
iw[:, :, :] = (w - wmean)/wstd*1000.0
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
# because MATLAB and Octave do a round when casting from float to int,
# and Python does a floor, we have to round first
np.around(iu, decimals=0, out=iu)
np.around(iv, decimals=0, out=iv)
np.around(iw, decimals=0, out=iw)
return iu.astype(np.int16), iv.astype(np.int16), iw.astype(np.int16)
def write_bladed(self, fpath, basename, shape):
"""
Write turbulence BLADED file
"""
# TODO: get these parameters from a HAWC2 input file
seed = 6
mean_ws = 11.4
turb = 3
R1 = -99
R2 = 4
du = 0.974121094
dv = 4.6875
dw = 4.6875
longti = 14
latti = 9.8
vertti = 7
iu, iv, iw = self.convert2bladed(fpath, basename, shape=shape)
fid = open(fpath + basename + '.wnd', 'wb')
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
fid.write(struct.pack('h', R1)) # R1
fid.write(struct.pack('h', R2)) # R2
fid.write(struct.pack('i', turb)) # Turb
fid.write(struct.pack('f', 999)) # Lat
fid.write(struct.pack('f', 999)) # rough
fid.write(struct.pack('f', 999)) # refh
fid.write(struct.pack('f', longti)) # LongTi
fid.write(struct.pack('f', latti)) # LatTi
fid.write(struct.pack('f', vertti)) # VertTi
fid.write(struct.pack('f', dv)) # VertGpSpace
fid.write(struct.pack('f', dw)) # LatGpSpace
fid.write(struct.pack('f', du)) # LongGpSpace
fid.write(struct.pack('i', shape[0]/2)) # HalfAlong
fid.write(struct.pack('f', mean_ws)) # meanWS
fid.write(struct.pack('f', 999.)) # VertLongComp
fid.write(struct.pack('f', 999.)) # LatLongComp
fid.write(struct.pack('f', 999.)) # LongLongComp
fid.write(struct.pack('i', 999)) # Int
fid.write(struct.pack('i', seed)) # Seed
fid.write(struct.pack('i', shape[1])) # VertGpNum
fid.write(struct.pack('i', shape[2])) # LatGpNum
fid.write(struct.pack('f', 999)) # VertLatComp
fid.write(struct.pack('f', 999)) # LatLatComp
fid.write(struct.pack('f', 999)) # LongLatComp
fid.write(struct.pack('f', 999)) # VertVertComp
fid.write(struct.pack('f', 999)) # LatVertComp
fid.write(struct.pack('f', 999)) # LongVertComp
# fid.flush()
# bladed2 = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16)
# for i in xrange(shape[0]):
# for k in xrange(shape[1]):
# for j in xrange(shape[2]):
# fid.write(struct.pack('i', iu[i, shape[1]-j-1, k]))
# fid.write(struct.pack('i', iv[i, shape[1]-j-1, k]))
# fid.write(struct.pack('i', iw[i, shape[1]-j-1, k]))
# bladed2[i,k,j,0] = iu[i, shape[1]-j-1, k]
# bladed2[i,k,j,1] = iv[i, shape[1]-j-1, k]
# bladed2[i,k,j,2] = iw[i, shape[1]-j-1, k]
# re-arrange array for bladed format
bladed = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16)
bladed[:, :, :, 0] = iu[:, ::-1, :]
bladed[:, :, :, 1] = iv[:, ::-1, :]
bladed[:, :, :, 2] = iw[:, ::-1, :]
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
bladed_swap_view = bladed.swapaxes(1,2)
bladed_swap_view.tofile(fid, format='%int16')
fid.flush()
fid.close()
class Bladed(object):
def __init__(self):
"""
Some BLADED results I have seen are just weird text files. Convert
them to a more convienent format.
path/to/file
channel 1 description
col a name/unit col b name/unit
a0 b0
a1 b1
...
path/to/file
channel 2 description
col a name/unit col b name/unit
...
"""
pass
def infer_format(self, lines):
"""
Figure out how many channels and time steps are included
"""
count = 1
for line in lines[1:]:
if line == lines[0]:
break
count += 1
iters = count - 3
chans = len(lines) / (iters + 3)
return int(chans), int(iters)
def read(self, fname, chans=None, iters=None, enc='cp1252'):
"""
Parameters
----------
fname : str
chans : int, default=None
iters : int, default=None
enc : str, default='cp1252'
character encoding of the source file. Usually BLADED is used on
windows so Western-European windows encoding is a safe bet.
"""
with codecs.opent(fname, 'r', enc) as f:
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
lines = f.readlines()
nrl = len(lines)
if chans is None and iters is None:
chans, iters = self.infer_format(lines)
if iters is not None:
chans = int(nrl / (iters + 3))
if chans is not None:
iters = int((nrl / chans) - 3)
# file_head = [ [k[:-2],0] for k in lines[0:nrl:iters+3] ]
# chan_head = [ [k[:-2],0] for k in lines[1:nrl:iters+3] ]
# cols_head = [ k.split('\t')[:2] for k in lines[2:nrl:iters+3] ]
data = {}
for k in range(chans):
# take the column header from the 3 comment line, but
head = lines[2 + (3 + iters)*k][:-2].split('\t')[1].encode('utf-8')
i0 = 3 + (3 + iters)*k
i1 = i0 + iters
data[head] = np.array([k[:-2].split('\t')[1] for k in lines[i0:i1:1]])
data[head] = data[head].astype(np.float64)
time = np.array([k[:-2].split('\t')[0] for k in lines[i0:i1:1]])
df = pd.DataFrame(data, index=time.astype(np.float64))
df.index.name = lines[0][:-2]
return df
if __name__ == '__main__':