Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 3 19:53:59 2014
@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import dict
from io import open as opent
from builtins import range
from builtins import str
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object
#print(*objects, sep=' ', end='\n', file=sys.stdout)
__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'
import os
import copy
import struct
import math
from time import time
import codecs
import scipy
import scipy.integrate as integrate
import array
import numpy as np
import pandas as pd
#import sympy
# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb.prepost import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
from wetb.fatigue_tools.rainflowcounting.rainflowcount import rainflow_astm as rainflow_astm
from wetb.fatigue_tools.rainflowcounting.rfc_hist import rfc_hist as rfc_hist
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""Read a HAWC2 result data file
Usage:
obj = LoadResults(file_path, file_name)
This class is called like a function:
HawcResultData() will read the specified file upon object initialization.
Available output:
obj.sig[timeStep,channel] : complete result file in a numpy array
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
obj.error_msg: is 'none' if everything went OK, otherwise it holds the
error
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos'] = pos
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""

David Verelst
committed
# ch_df columns, these are created by LoadResults._unified_channel_names
cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',

David Verelst
committed
'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr',
'direction'])
# start with reading the .sel file, containing the info regarding
# how to read the binary file and the channel information
def __init__(self, file_path, file_name, debug=False, usecols=None,
readdata=True):
self.debug = debug
# timer in debug mode
if self.debug:
start = time()
self.file_path = file_path
# remove .log, .dat, .sel extensions who might be accedental left
if file_name[-4:] in ['.htc','.sel','.dat','.log']:
file_name = file_name[:-4]
self.file_name = file_name
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
self.read_sel()
# create for any supported channel the
# continue if the file has been succesfully read
if self.error_msg == 'none':
# load the channel id's and scale factors
self.scale_factors = self.data_sel()
# with the sel file loaded, we have all the channel names to
# squeeze into a more consistant naming scheme
self._unified_channel_names()
# only read when asked for
if readdata:
# if there is sel file but it is empty or whatever else
# FilType will not exists
try:
# read the binary file
if self.FileType == 'BINARY':
self.read_bin(self.scale_factors, usecols=usecols)
# read the ASCII file
elif self.FileType == 'ASCII':
self.read_ascii(usecols=usecols)
else:
print('='*79)
print('unknown file type: ' + self.FileType)
print('='*79)
self.error_msg = 'error: unknown file type'
self.sig = []
except:
print('='*79)
print('couldn\'t determine FileType')
print('='*79)
self.error_msg = 'error: no file type'
self.sig = []
if self.debug:
stop = time() - start
print('time to load HAWC2 file:', stop, 's')
def read_sel(self):
# anticipate error on file reading
try:
# open file, read and close
go_sel = os.path.join(self.file_path, self.file_name + '.sel')
FILE = opent(go_sel, "r")
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
self.lines = FILE.readlines()
FILE.close()
self.error_msg = 'none'
# error message if the file does not exists
except:
# print(26*' ' + 'ERROR'
print(50*'=')
print(self.file_path)
print(self.file_name + '.sel could not be found')
print(50*'=')
self.error_msg = 'error: file not found'
def data_sel(self):
# scan through all the lines in the file
line_nr = 1
# channel counter for ch_details
ch = 0
for line in self.lines:
# on line 9 we can read following paramaters:
if line_nr == 9:
# remove the end of line character
line = line.replace('\n','').replace('\r', '')
settings = line.split(' ')
# delete all empty string values
for k in range(settings.count('')):
settings.remove('')
# and assign proper values with correct data type
self.N = int(settings[0])
self.Nch = int(settings[1])
self.Time = float(settings[2])
self.FileType = settings[3]
self.Freq = self.N/self.Time
# prepare list variables
self.ch_details = np.ndarray(shape=(self.Nch,3),dtype='<U100')
# it seems that float64 reeds the data correctly from the file
scale_factors = scipy.zeros(self.Nch, dtype='Float64')
#self.scale_factors_dec = scipy.zeros(self.Nch, dtype='f8')
i = 0
# starting from line 13, we have the channels info
if line_nr > 12:
# read the signal details
if line_nr < 13 + self.Nch:
# remove leading and trailing whitespaces from line parts
self.ch_details[ch,0] = str(line[12:43]).strip() # chID
self.ch_details[ch,1] = str(line[43:54]).strip() # chUnits
self.ch_details[ch,2] = str(line[54:-1]).strip() # chDescr
ch += 1
# read the signal scale parameters for binary format
elif line_nr > 14 + self.Nch:
scale_factors[i] = line
# print(scale_factors[i]
#self.scale_factors_dec[i] = D.Decimal(line)
i = i + 1
# stop going through the lines if at the end of the file
if line_nr == 2*self.Nch + 14:
self.scale_factors = scale_factors
if self.debug:
print('N ', self.N)
print('Nch ', self.Nch)
print('Time ', self.Time)
print('FileType', self.FileType)
print('Freq ', self.Freq)
print('scale_factors', scale_factors.shape)
return scale_factors
break
# counting the line numbers
line_nr = line_nr + 1
def read(self, usecols=False):
"""
This whole LoadResults needs to be refactered because it is crap.
Keep the old ones for backwards compatibility
"""
if self.FileType == 'ASCII':
self.read_ascii(usecols=usecols)
elif self.FileType == 'BINARY':
self.read_bin(self.scale_factors, usecols=usecols)
def read_bin(self, scale_factors, usecols=False):
if not usecols:
usecols = list(range(0, self.Nch))
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
fid = open(os.path.join(self.file_path, self.file_name) + '.dat', 'rb')
self.sig = np.zeros( (self.N, len(usecols)) )
for j, i in enumerate(usecols):
fid.seek(i*self.N*2,0)
self.sig[:,j] = np.fromfile(fid, 'int16', self.N)*scale_factors[i]
def read_bin_old(self, scale_factors):
# if there is an error reading the binary file (for instance if empty)
try:
# read the binary file
go_binary = os.path.join(self.file_path, self.file_name) + '.dat'
FILE = open(go_binary, mode='rb')
# create array, put all the binary elements as one long chain in it
binvalues = array.array('h')
binvalues.fromfile(FILE, self.N * self.Nch)
FILE.close()
# convert now to a structured numpy array
# sig = np.array(binvalues, np.float)
# sig = np.array(binvalues)
# this is faster! the saved bin values are only of type int16
sig = np.array(binvalues, dtype='int16')
if self.debug: print(self.N, self.Nch, sig.shape)
# sig = np.reshape(sig, (self.Nch, self.N))
# # apperently Nch and N had to be reversed to read it correctly
# # is this because we are reading a Fortran array with Python C
# # code? so now transpose again so we have sig(time, channel)
# sig = np.transpose(sig)
# reshape the array to 2D and transpose (Fortran to C array)
sig = sig.reshape((self.Nch, self.N)).T
# create diagonal vector of size (Nch,Nch)
dig = np.diag(scale_factors)
# now all rows of column 1 are multiplied with dig(1,1)
sig = np.dot(sig,dig)
self.sig = sig
# 'file name;' + 'lnr;msg;'*(len(MsgList)) + '\n'
except:
self.sig = []
self.error_msg = 'error: reading binary file failed'
print('========================================================')
print(self.error_msg)
print(self.file_path)
print(self.file_name)
print('========================================================')
def read_ascii(self, usecols=None):
try:
go_ascii = os.path.join(self.file_path, self.file_name) + '.dat'
# self.sig = np.genfromtxt(go_ascii)
self.sig = np.loadtxt(go_ascii, usecols=usecols)
# self.sig = np.fromfile(go_ascii, dtype=np.float32, sep=' ')
# self.sig = self.sig.reshape((self.N, self.Nch))
except:
self.sig = []
self.error_msg = 'error: reading ascii file failed'
print('========================================================')
print(self.error_msg)
print(self.file_path)
print(self.file_name)
print('========================================================')
# print '========================================================'
# print 'ASCII reading not implemented yet'
# print '========================================================'
# self.sig = []
# self.error_msg = 'error: ASCII reading not implemented yet'
def reformat_sig_details(self):
"""Change HAWC2 output description of the channels short descriptive
strings, usable in plots
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
"""
# CONFIGURATION: mappings between HAWC2 and short good output:
change_list = []
change_list.append( ['original','new improved'] )
# change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
# change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
# change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
# change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
# change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
# change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
# change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )
change_list.append( ['Mx coo: blade1','blade1 flap'] )
change_list.append( ['My coo: blade1','blade1 edge'] )
change_list.append( ['Mz coo: blade1','blade1 torsion'] )
change_list.append( ['Mx coo: blade2','blade2 flap'] )
change_list.append( ['My coo: blade2','blade2 edge'] )
change_list.append( ['Mz coo: blade2','blade2 torsion'] )
change_list.append( ['Mx coo: blade3','blade3 flap'] )
change_list.append( ['My coo: blade3','blade3 edeg'] )
change_list.append( ['Mz coo: blade3','blade3 torsion'] )
change_list.append( ['Mx coo: hub1','blade1 out-of-plane'] )
change_list.append( ['My coo: hub1','blade1 in-plane'] )
change_list.append( ['Mz coo: hub1','blade1 torsion'] )
change_list.append( ['Mx coo: hub2','blade2 out-of-plane'] )
change_list.append( ['My coo: hub2','blade2 in-plane'] )
change_list.append( ['Mz coo: hub2','blade2 torsion'] )
change_list.append( ['Mx coo: hub3','blade3 out-of-plane'] )
change_list.append( ['My coo: hub3','blade3 in-plane'] )
change_list.append( ['Mz coo: hub3','blade3 torsion'] )
# this one will create a false positive for tower node nr1
change_list.append( ['Mx coo: tower','tower top momemt FA'] )
change_list.append( ['My coo: tower','tower top momemt SS'] )
change_list.append( ['Mz coo: tower','yaw-moment'] )
change_list.append( ['Mx coo: chasis','chasis momemt FA'] )
change_list.append( ['My coo: chasis','yaw-moment chasis'] )
change_list.append( ['Mz coo: chasis','chasis moment SS'] )
change_list.append( ['DLL inp 2: 2','tower clearance'] )
self.ch_details_new = np.ndarray(shape=(self.Nch,3),dtype='<U100')
# approach: look for a specific description and change it.
# This approach is slow, but will not fail if the channel numbers change
# over different simulations
for ch in range(self.Nch):
# the change_list will always be slower, so this loop will be
# inside the bigger loop of all channels
self.ch_details_new[ch,:] = self.ch_details[ch,:]
for k in range(len(change_list)):
if change_list[k][0] == self.ch_details[ch,0]:
self.ch_details_new[ch,0] = change_list[k][1]
# channel description should be unique, so delete current
# entry and stop looking in the change list
del change_list[k]
break
# self.ch_details_new = ch_details_new
def _unified_channel_names(self):
"""
Make certain channels independent from their index.
The unified channel dictionary ch_dict holds consequently named
channels as the key, and the all information is stored in the value
as another dictionary.
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
node numbers start with 0 at the root
element numbers start with 1 at the root
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos']
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
For many of the aero sensors:
'Cl', 'Cd', 'Alfa', 'Vrel'
key:
sensortype-blade_nr-pos
Cl-1-0.01
value:
ch_dict[tag]['sensortype']
ch_dict[tag]['blade_nr']
ch_dict[tag]['pos']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# save them in a dictionary, use the new coherent naming structure
# as the key, and as value again a dict that hols all the different
# classifications: (chi, channel nr), (coord, coord), ...
self.ch_dict = dict()
# some channel ID's are unique, use them
ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
'Ae rot. thrust', 'Time', 'Azi 1'])
ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
ch_aerogrid = set(['a_grid', 'am_grid'])
# also safe as df
# cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
# 'component', 'pos', 'coord', 'sensortype', 'radius',
# 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
# 'azimuth', 'flap_nr'])
df_dict = {col:[] for col in self.cols}
df_dict['ch_name'] = []
# scan through all channels and see which can be converted
# to sensible unified name
for ch in range(self.Nch):
items = self.ch_details[ch,2].split(' ')
# remove empty values in the list
items = misc.remove_items(items, '')
dll = False
# be carefull, identify only on the starting characters, because
# the signal tag can hold random text that in some cases might
# trigger a false positive
# -----------------------------------------------------------------
# check for all the unique channel descriptions
if self.ch_details[ch,0].strip() in ch_unique:
tag = self.ch_details[ch,0].strip()
channelinfo = {}
channelinfo['units'] = self.ch_details[ch,1]
channelinfo['sensortag'] = self.ch_details[ch,2]
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# or in the long description:
# 0 1 2 3 4 5 6 and up
# MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT
elif self.ch_details[ch,2].startswith('MomentM'):
coord = items[5]
bodyname = items[1].replace('Mbdy:', '')
# set nodenr to sortable way, include leading zeros
# node numbers start with 0 at the root
nodenr = '%03i' % int(items[3])
# skip the attached the component
#sensortype = items[0][:-2]
# or give the sensor type the same name as in HAWC2
sensortype = 'momentvec'
component = items[0][-1:len(items[0])]
# the tag only exists if defined
if len(items) > 6:
sensortag = ' '.join(items[6:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 and up
# Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT
elif self.ch_details[ch,2].startswith('Force'):
coord = items[6]
bodyname = items[2].replace('Mbdy:', '')
nodenr = '%03i' % int(items[4])
# skipe the attached the component
#sensortype = items[0]
# or give the sensor type the same name as in HAWC2
sensortype = 'forcevec'
component = items[1][1]
if len(items) > 7:
sensortag = ' '.join(items[7:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 8
# State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade
# 0 1 2 3 4 5 6 7 8 9+
# State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label
# State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label
elif self.ch_details[ch,2].startswith('State'):
# or self.ch_details[ch,0].startswith('euler') \
# or self.ch_details[ch,0].startswith('ax') \
# or self.ch_details[ch,0].startswith('omega') \
# or self.ch_details[ch,0].startswith('proj'):
coord = items[8]
bodyname = items[3].replace('Mbdy:', '')
# element numbers start with 1 at the root
elementnr = '%03i' % int(items[5])
zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
# skip the attached the component
#sensortype = ''.join(items[0:2])
# or give the sensor type the same name as in HAWC2
tmp = self.ch_details[ch,0].split(' ')
sensortype = tmp[0]
if sensortype.startswith('State'):
sensortype += ' ' + tmp[1]
component = items[2]
if len(items) > 8:
sensortag = ' '.join(items[9:])
else:
sensortag = ''
# and tag it
pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# DLL CONTROL I/O
# there are two scenario's on how the channel description is formed
# the channel id is always the same though
# id for all three cases:
# DLL out 1: 3
# DLL inp 2: 3
# description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
# 0 1 2 3 4+
# yaw_control outvec 3 yaw_c input reference angle
# description case 2 ("dll inpvec 2 1" in htc output):
# 0 1 2 3 4 5 6+
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
elif self.ch_details[ch,0].startswith('DLL'):
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = self.ch_details[ch,2].replace(':','')
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch,0].startswith('bea'):
output_type = self.ch_details[ch,0].split(' ')[1]
bearing_name = items[0]
units = self.ch_details[ch,1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name,output_type,units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch,0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch,2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
sensortype = self.ch_details[ch,0].split(',')[0]
radius = dscr_list[-1]
# is this always valid?
blade_nr = self.ch_details[ch,2].split('blade ')[1][0]
# sometimes the units for aero sensors are wrong!
units = self.ch_details[ch,1]
# there is no label option
# and tag it
tag = '%s-%s-%s' % (sensortype,blade_nr,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch,0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch,0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
units = self.ch_details[ch,1]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch,0].strip()[:5] == 'Induc':
items = self.ch_details[ch,2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
items = self.ch_details[ch,0].split(',')
coord = items[1].strip()
component = items[0][-2:]
units = self.ch_details[ch,1]
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch,2].startswith('Water'):
units = self.ch_details[ch,1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch,0].startswith('WSP gl.'):
units = self.ch_details[ch,1]
direction = self.ch_details[ch,0].split(',')[1]
tmp = self.ch_details[ch,2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
channelinfo['sensortype'] = 'windspeed'
channelinfo['component'] = direction[1:]
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch,0].startswith('WSP V'):
units = self.ch_details[ch,1].strip()
direction = self.ch_details[ch,0].split(' ')[1].strip()
blade_nr = self.ch_details[ch,2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch,2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch,2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch,0][:7] == 'setbeta':
units = self.ch_details[ch,1].strip()
blade_nr = self.ch_details[ch,2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
flap_nr = self.ch_details[ch,2].split(' ')[-1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict = {col:[] for col in cols}
df_dict['ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(ch_name)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
i_zero = int(self.sig[0,0]*self.Freq)
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1])
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_stats(self, sig, i0=0, i1=-1):
stats = {}