Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
'''
Created on 01/08/2016
@author: MMPE
'''
from wetb.hawc2.pc_file import PCFile
from wetb.hawc2.ae_file import AEFile
from wetb.hawc2.htc_file import HTCFile
import os
import numpy as np
from wetb.hawc2.st_file import StFile
class BladeData(object):
def plot_xz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.pcFile.chord(z) / 2, label='Leading edge')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) - self.pcFile.chord(z) / 2, label="Trailing edge")
x, y, z = self.hawc2_splines()
#plt.plot(z, x, label='Hawc2spline')
def plot_yz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.pcFile.thickness(z) / 100 * self.pcFile.chord(z) / 2, label='Suction side')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) - self.pcFile.thickness(z) / 100 * self.pcFile.chord(z) / 2, label="Pressure side")
x, y, z = self.hawc2_splines()
#plt.plot(z, y, label='Hawc2spline')
def hawc2_splines(self):
curve_z = np.r_[0, np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))]
curve_z_nd = curve_z / curve_z[-1]
def akima(x, y):
n = len(x)
var = np.zeros((n + 3))
z = np.zeros((n))
co = np.zeros((n, 4))
for i in range(n - 1):
var[i + 2] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
var[n + 1] = 2 * var[n] - var[n - 1]
var[n + 2] = 2 * var[n + 1] - var[n]
var[1] = 2 * var[2] - var[3]
var[0] = 2 * var[1] - var[2]
for i in range(n):
wi1 = abs(var[i + 3] - var[i + 2])
wi = abs(var[i + 1] - var[i])
if (wi1 + wi) == 0:
z[i] = (var[i + 2] + var[i + 1]) / 2
else:
z[i] = (wi1 * var[i + 1] + wi * var[i + 2]) / (wi1 + wi)
for i in range(n - 1):
dx = x[i + 1] - x[i]
a = (z[i + 1] - z[i]) * dx
b = y[i + 1] - y[i] - z[i] * dx
co[i, 0] = y[i]
co[i, 1] = z[i]
co[i, 2] = (3 * var[i + 2] - 2 * z[i] - z[i + 1]) / dx
co[i, 3] = (z[i] + z[i + 1] - 2 * var[i + 2]) / dx ** 2
co[n - 1, 0] = y[n - 1]
co[n - 1, 1] = z[n - 1]
co[n - 1, 2] = 0
co[n - 1, 3] = 0
return co
def coef2spline(s, co):
x, y = [], []
for i, c in enumerate(co.tolist()[:-1]):
p = np.poly1d(c[::-1])
z = np.linspace(0, s[i + 1] - s[i ], 10)
x.extend(s[i] + z)
y.extend(p(z))
return y
x, y, z = [coef2spline(curve_z_nd, akima(curve_z_nd, self.c2def[:, i])) for i in range(3)]
return x, y, z
class H2BladeData(BladeData):
def __init__(self, htc_filename, modelpath):
self.htcfile = htcfile = HTCFile(htc_filename, modelpath)
self.pcFile = PCFile(os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0]),
os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0]))
s = htcfile.new_htc_structure
blade_name = htcfile.aero.link[2]
mainbodies = [s[k] for k in s.keys() if s[k].name_ == "main_body"]
blade_main_body = [mb for mb in mainbodies if mb.name[0] == blade_name][0]
self.stFile = StFile(os.path.join(htcfile.modelpath, blade_main_body.timoschenko_input.filename[0]))
self.c2def = np.array([v.values[1:5] for v in blade_main_body.c2_def if v.name_ == "sec"])
def plot_geometry(self, plt=None):
if plt is None:
import matplotlib.pyplot as plt
BladeData.plot_xz_geometry(self, plt=plt)
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_e(z), label='Elastic center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_cg(z), label='Mass center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_sh(z), label='Shear center')
plt.legend()
plt.figure()
BladeData.plot_yz_geometry(self, plt=plt)
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_e(z), label='Elastic center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_cg(z), label='Mass center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_sh(z), label='Shear center')
plt.legend()
plt.show()
class H2AeroBladeData(BladeData):
def __init__(self, htc_filename, modelpath):
self.htcfile = htcfile = HTCFile(htc_filename, modelpath)
self.pcFile = PCFile(os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0]),
os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0]))
self.c2def = np.array([v.values[1:5] for v in htcfile.blade_c2_def if v.name_ == "sec"])
def plot_geometry(self, plt=None):
if plt is None:
import matplotlib.pyplot as plt
BladeData.plot_xz_geometry(self, plt=plt)
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.legend()
plt.figure()
BladeData.plot_yz_geometry(self, plt=plt)
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.legend()
plt.show()