Newer
Older
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import absolute_import
from builtins import map
from future import standard_library
standard_library.install_aliases()
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
def rad(deg):
return deg * np.pi / 180
def deg(rad):
return rad / np.pi * 180
def sind(dir_deg):
return np.sin(rad(dir_deg))
def cosd(dir_deg):
return np.cos(rad(dir_deg))
def tand(dir_deg):
return np.tan(rad(dir_deg))
def mean_deg(dir, axis=0):
"""Mean of angles in degrees
Parameters
----------
dir : array_like
Angles in degrees
Returns
-------
mean_deg : float
Mean angle
"""
return deg(np.arctan2(np.mean(sind(dir[:]), axis), np.mean(cosd(dir[:]), axis)))
def std_deg(dir):
"""Standard deviation of angles in degrees
Parameters
----------
dir : array_like
Angles in degrees
Returns
-------
std_deg : float
standard deviation
"""
return deg(np.sqrt(1 - (np.mean(sind(dir)) ** 2 + np.mean(cosd(dir)) ** 2)))
def wsp_dir2uv(wsp, dir, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v
Parameters
----------
wsp : array_like
Horizontal wind speed
dir : array_like
Wind direction
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
"""
if dir_ref is None:
dir = dir[:] - mean_deg(dir[:])
else:
dir = dir[:] - dir_ref
u = np.cos(rad(dir)) * wsp[:]
v = -np.sin(rad(dir)) * wsp[:]
return np.array([u, v])
def wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v,w
Parameters
----------
wsp : array_like
- if wsp_horizontal is True: Horizontal wind speed, $\sqrt{u^2+v^2}\n
- if wsp_horizontal is False: Wind speed, $\sqrt{u^2+v^2+w^2}
dir : array_like
Wind direction
tilt : array_like
Wind tilt
wsp_horizontal : bool
See wsp
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
v wind component
"""
wsp, dir, tilt = wsp[:], dir[:], tilt[:]
if wsp_horizontal:
w = tand(tilt) * wsp
u, v = wsp_dir2uv(wsp, dir, dir_ref)
else:
w = sind(tilt) * wsp
u, v = wsp_dir2uv(np.sqrt(wsp ** 2 - w ** 2), dir, dir_ref)
return np.array([u, v, w])
def xyz2uvw(x, y, z, left_handed=True):
"""Convert sonic x,y,z measurements to u,v,w wind components
Parameters
----------
x : array_like
Sonic x component
y : array_like
Sonic x component
z : array_like
Sonic x component
left_handed : boolean
if true (default), xyz are defined in left handed coodinate system (default for some sonics)
if false, xyz are defined in normal right handed coordinate system
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
w wind component
"""
x, y, z = map(np.array, [x, y, z])
if left_handed:
y *= -1
theta = deg(np.arctan2(np.mean(y), np.mean(x)))
SV = cosd(theta) * y - sind(theta) * x
SUW = cosd(theta) * x + sind(theta) * y
#% rotation around y of tilt
tilt = deg(np.arctan2(np.mean(z), np.mean(SUW)))
SU = SUW * cosd(tilt) + z * sind(tilt);
SW = z * cosd(tilt) - SUW * sind(tilt);
return np.array([SU, SV, SW])
def rpm2rads(rpm):
return rpm * 2 * np.pi / 60
def abvrel2xyz(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero: Parallel to pitot tube. Positive: Flow from wind side (pressure side)
Pitot tube side slip angle [rad]. Zero: Parallel to pitot tube. Positive: Flow from root side
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component towards pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = -((np.abs(beta) > np.pi / 2) * 2 - 1) # +1 for |beta| < 90, -1 for |beta|>90
sign_vsy = np.sign(alpha) #+ for alpha > 0
sign_vsz = -np.sign(beta) #- for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))