Skip to content
Snippets Groups Projects
filters.py 16.2 KiB
Newer Older
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 20 18:14:02 2013

@author: dave
"""
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import absolute_import
from future import standard_library
standard_library.install_aliases()
from builtins import object
import numpy as np
import scipy as sp

from wetb.prepost import DataChecks as chk
from wetb.prepost.misc import calc_sample_rate
from wetb.prepost import mplutils
class Filters(object):

    def __init__(self):
        pass


    def smooth(self, x, window_len=11, window='hanning'):
        """
        Smooth the data using a window with requested size
        ==================================================

        This method is based on the convolution of a scaled window with the
        signal. The signal is prepared by introducing reflected copies of the
        signal (with the window size) in both ends so that transient parts are
        minimized in the begining and end part of the output signal.

        input:
            x: the input signal
            window_len: the dimension of the smoothing window; should be an odd
            integer
            window: the type of window from 'flat', 'hanning', 'hamming',
            'bartlett', 'blackman' flat window will produce a moving average
            smoothing.

        output:
            the smoothed signal

        example:

        t=linspace(-2,2,0.1)
        x=sin(t)+randn(len(t))*0.1
        y=smooth(x)

        see also:

        numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman,
        numpy.convolve, scipy.signal.lfilter

        TODO: the window parameter could be the window itself if an array
        instead of a string

        SOURCE: http://www.scipy.org/Cookbook/SignalSmooth
        """

        if x.ndim != 1:
            raise ValueError("smooth only accepts 1 dimension arrays.")

        if x.size < window_len:
            msg = "Input vector needs to be bigger than window size."
            raise ValueError(msg)

        if window_len<3:
            return x

        windowlist = ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']
        if not window in windowlist:
            msg = "Window should be 'flat', 'hanning', 'hamming', 'bartlett',"
            msg += " or 'blackman'"
            raise ValueError(msg)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

        s = np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]]
        #print(len(s))
        if window == 'flat': #moving average
            w = np.ones(window_len,'d')
        else:
            w = eval('np.'+window+'(window_len)')

        y = np.convolve(w/w.sum(), s, mode='valid')
        return y

    def butter(self, time, data, **kwargs):
        """
        Source:
        https://azitech.wordpress.com/2011/03/15/
        designing-a-butterworth-low-pass-filter-with-scipy/
        """

        sample_rate = kwargs.get('sample_rate', None)
        if not sample_rate:
            sample_rate = calc_sample_rate(time)

        # The cutoff frequency of the filter.
        cutoff_hz = kwargs.get('cutoff_hz', 1.0)

        # design filter
        norm_pass = cutoff_hz/(sample_rate/2.0)
        norm_stop = 1.5*norm_pass
        (N, Wn) = sp.signal.buttord(wp=norm_pass, ws=norm_stop, gpass=2,
                                    gstop=30, analog=0)
        (b, a) = sp.signal.butter(N, Wn, btype='low', analog=0, output='ba')

        # filtered output
        #zi = signal.lfiltic(b, a, x[0:5], x[0:5])
        #(y, zi) = signal.lfilter(b, a, x, zi=zi)
        data_filt = sp.signal.lfilter(b, a, data)

        return data_filt

    def fir(self, time, data, **kwargs):
        """
        Based on the xxample from the SciPy cook boock, see
        http://www.scipy.org/Cookbook/FIRFilter

        Parameters
        ----------

        time : ndarray(n)

        data : ndarray(n)

        plot : boolean, default=False

        figpath : str, default=False

        figfile : str, default=False

        sample_rate : int, default=None
            If None, sample rate will be calculated from the given signal

        freq_trans_width : float, default=1
            The desired width of the transition from pass to stop,
            relative to the Nyquist rate.

        ripple_db : float, default=10
            The desired attenuation in the stop band, in dB.

        cutoff_hz : float, default=10
            Frequencies above cutoff_hz are filtered out

        Returns
        -------

        filtered_x : ndarray(n - (N-1))
            filtered signal

        N : float
            order of the firwin filter

        delay : float
            phase delay due to the filtering process

        """

        plot = kwargs.get('plot', False)
        figpath = kwargs.get('figpath', False)
        figfile = kwargs.get('figfile', False)

        sample_rate = kwargs.get('sample_rate', None)
        # The desired width of the transition from pass to stop,
        # relative to the Nyquist rate.  We'll design the filter
        # with a 5 Hz transition width.
        freq_trans_width = kwargs.get('freq_trans_width', 1)

        # The desired attenuation in the stop band, in dB.
        ripple_db = kwargs.get('ripple_db', 10)

        # The cutoff frequency of the filter.
        cutoff_hz = kwargs.get('cutoff_hz', 10)

        chk.array_1d(time)
        chk.array_1d(data)

        if not sample_rate:
            sample_rate = calc_sample_rate(time)

        #------------------------------------------------
        # Create a FIR filter and apply it to data[:,channel]
        #------------------------------------------------

        # The Nyquist rate of the signal.
        nyq_rate = sample_rate / 2.0

        # The desired width of the transition from pass to stop,
        # relative to the Nyquist rate.  We'll design the filter
        # with a 5 Hz transition width.
        width = freq_trans_width/nyq_rate

        # Compute the order and Kaiser parameter for the FIR filter.
        N, beta = sp.signal.kaiserord(ripple_db, width)

        # Use firwin with a Kaiser window to create a lowpass FIR filter.
        taps = sp.signal.firwin(N, cutoff_hz/nyq_rate,
                                  window=('kaiser', beta))

        # Use lfilter to filter x with the FIR filter.
        filtered_x = sp.signal.lfilter(taps, 1.0, data)

        # The phase delay of the filtered signal.
        delay = 0.5 * (N-1) / sample_rate

#        # the filtered signal, shifted to compensate for the phase delay.
#        time_shifted = time-delay
#        # the "good" part of the filtered signal.  The first N-1
#        # samples are "corrupted" by the initial conditions.
#        time_good = time[N-1:] - delay

        if plot:
            self.plot_fir(figpath, figfile, time, data, filtered_x, N, delay,
                 sample_rate, taps, nyq_rate)

        return filtered_x, N, delay


    def plot_fir(self, figpath, figfile, time, data, filtered_x, N, delay,
                 sample_rate, taps, nyq_rate):
        """
        """

        #------------------------------------------------
        # Setup the figure parameters
        #------------------------------------------------

        plot = mplutils.A4Tuned()
        plot.setup(figpath+figfile, nr_plots=3, grandtitle=figfile,
                         figsize_y=20, wsleft_cm=2.)

        #------------------------------------------------
        # Plot the FIR filter coefficients.
        #------------------------------------------------
        plot_nr = 1
        ax1 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
        ax1.plot(taps, 'bo-', linewidth=2)
        ax1.set_title('Filter Coefficients (%d taps)' % N)
        ax1.grid(True)

        #------------------------------------------------
        # Plot the magnitude response of the filter.
        #------------------------------------------------

        plot_nr += 1
        ax2 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)

        w, h = sp.signal.freqz(taps, worN=8000)
        ax2.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2.set_xlabel('Frequency (Hz)')
        ax2.set_ylabel('Gain')
        ax2.set_title('Frequency Response')
        ax2.set_ylim(-0.05, 1.05)
#        ax2.grid(True)

        # in order to place the nex axes inside following figure, first
        # determine the ax2 bounding box
        # points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]
        ax2box = ax2.get_window_extent().get_points()
        # seems to be expressed in pixels so convert to relative coordinates
#        print ax2box
        # figure size in pixels
        figsize_x_pix = plot.figsize_x*plot.dpi
        figsize_y_pix = plot.figsize_y*plot.dpi
        # ax2 box in relative coordinates
        ax2box[:,0] = ax2box[:,0] / figsize_x_pix
        ax2box[:,1] = ax2box[:,1] / figsize_y_pix
#        print ax2box[0,0], ax2box[1,0], ax2box[0,1], ax2box[1,1]
        # left position new box at 10% of x1
        left   = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.15)
        bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30)  # x2
        width  = (ax2box[1,0] - ax2box[0,0]) * 0.35
        height = (ax2box[1,1] - ax2box[0,1]) * 0.6
#        print [left, bottom, width, height]

        # left inset plot.
        # [left, bottom, width, height]
#        ax2a = plot.fig.add_axes([0.42, 0.6, .45, .25])
        ax2a = plot.fig.add_axes([left, bottom, width, height])
        ax2a.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2a.set_xlim(0,8.0)
        ax2a.set_ylim(0.9985, 1.001)
        ax2a.grid(True)

        # right inset plot
        left   = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.62)
        bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30)  # x2
        width  = (ax2box[1,0] - ax2box[0,0]) * 0.35
        height = (ax2box[1,1] - ax2box[0,1]) * 0.6

        # Lower inset plot
#        ax2b = plot.fig.add_axes([0.42, 0.25, .45, .25])
        ax2b = plot.fig.add_axes([left, bottom, width, height])
        ax2b.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2b.set_xlim(12.0, 20.0)
        ax2b.set_ylim(0.0, 0.0025)
        ax2b.grid(True)

        #------------------------------------------------
        # Plot the original and filtered signals.
        #------------------------------------------------

        # The phase delay of the filtered signal.
        delay = 0.5 * (N-1) / sample_rate

        plot_nr += 1
        ax3 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
        # Plot the original signal.
        ax3.plot(time, data, label='original signal')
        # Plot the filtered signal, shifted to compensate for the phase delay.
        ax3.plot(time-delay, filtered_x, 'r-', label='filtered signal')
        # Plot just the "good" part of the filtered signal.  The first N-1
        # samples are "corrupted" by the initial conditions.
        ax3.plot(time[N-1:]-delay, filtered_x[N-1:], 'g', linewidth=4)

        ax3.set_xlabel('t')
        ax3.grid(True)

        plot.save_fig()


    def scipy_example(self, time, data, figpath, sample_rate=None):
        """
        Example from the SciPy Cookboock, see
        http://www.scipy.org/Cookbook/FIRFilter
        """

        chk.array_1d(time)
        chk.array_1d(data)

        if not sample_rate:
            sample_rate = calc_sample_rate(time)

        #------------------------------------------------
        # Create a FIR filter and apply it to data[:,channel]
        #------------------------------------------------

        # The Nyquist rate of the signal.
        nyq_rate = sample_rate / 2.0

        # The desired width of the transition from pass to stop,
        # relative to the Nyquist rate.  We'll design the filter
        # with a 5 Hz transition width.
        width = 5.0/nyq_rate

        # The desired attenuation in the stop band, in dB.
        ripple_db = 60.0

        # Compute the order and Kaiser parameter for the FIR filter.
        N, beta = sp.signal.kaiserord(ripple_db, width)

        # The cutoff frequency of the filter.
        cutoff_hz = 10.0

        # Use firwin with a Kaiser window to create a lowpass FIR filter.
        taps = sp.signal.firwin(N, cutoff_hz/nyq_rate, window=('kaiser', beta))

        # Use lfilter to filter x with the FIR filter.
        filtered_x = sp.signal.lfilter(taps, 1.0, data)

        #------------------------------------------------
        # Setup the figure parameters
        #------------------------------------------------
        figfile = 'filterdesign'

        plot = mplutils.A4Tuned()
        plot.setup(figpath+figfile, nr_plots=3, grandtitle=figfile,
                         figsize_y=20, wsleft_cm=2.)

        #------------------------------------------------
        # Plot the FIR filter coefficients.
        #------------------------------------------------
        plot_nr = 1
        ax1 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
        ax1.plot(taps, 'bo-', linewidth=2)
        ax1.set_title('Filter Coefficients (%d taps)' % N)
        ax1.grid(True)

        #------------------------------------------------
        # Plot the magnitude response of the filter.
        #------------------------------------------------

        plot_nr += 1
        ax2 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)

        w, h = sp.signal.freqz(taps, worN=8000)
        ax2.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2.set_xlabel('Frequency (Hz)')
        ax2.set_ylabel('Gain')
        ax2.set_title('Frequency Response')
        ax2.set_ylim(-0.05, 1.05)
#        ax2.grid(True)

        # in order to place the nex axes inside following figure, first
        # determine the ax2 bounding box
        # points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]
        ax2box = ax2.get_window_extent().get_points()
        # seems to be expressed in pixels so convert to relative coordinates
#        print ax2box
        # figure size in pixels
        figsize_x_pix = plot.figsize_x*plot.dpi
        figsize_y_pix = plot.figsize_y*plot.dpi
        # ax2 box in relative coordinates
        ax2box[:,0] = ax2box[:,0] / figsize_x_pix
        ax2box[:,1] = ax2box[:,1] / figsize_y_pix
#        print ax2box[0,0], ax2box[1,0], ax2box[0,1], ax2box[1,1]
        # left position new box at 10% of x1
        left   = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.15)
        bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30)  # x2
        width  = (ax2box[1,0] - ax2box[0,0]) * 0.35
        height = (ax2box[1,1] - ax2box[0,1]) * 0.6
#        print [left, bottom, width, height]

        # left inset plot.
        # [left, bottom, width, height]
#        ax2a = plot.fig.add_axes([0.42, 0.6, .45, .25])
        ax2a = plot.fig.add_axes([left, bottom, width, height])
        ax2a.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2a.set_xlim(0,8.0)
        ax2a.set_ylim(0.9985, 1.001)
        ax2a.grid(True)

        # right inset plot
        left   = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.62)
        bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30)  # x2
        width  = (ax2box[1,0] - ax2box[0,0]) * 0.35
        height = (ax2box[1,1] - ax2box[0,1]) * 0.6

        # Lower inset plot
#        ax2b = plot.fig.add_axes([0.42, 0.25, .45, .25])
        ax2b = plot.fig.add_axes([left, bottom, width, height])
        ax2b.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
        ax2b.set_xlim(12.0, 20.0)
        ax2b.set_ylim(0.0, 0.0025)
        ax2b.grid(True)

        #------------------------------------------------
        # Plot the original and filtered signals.
        #------------------------------------------------

        # The phase delay of the filtered signal.
        delay = 0.5 * (N-1) / sample_rate

        plot_nr += 1
        ax3 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
        # Plot the original signal.
        ax3.plot(time, data, label='original signal')
        # Plot the filtered signal, shifted to compensate for the phase delay.
        ax3.plot(time-delay, filtered_x, 'r-', label='filtered signal')
        # Plot just the "good" part of the filtered signal.  The first N-1
        # samples are "corrupted" by the initial conditions.
        ax3.plot(time[N-1:]-delay, filtered_x[N-1:], 'g', linewidth=4)

        ax3.set_xlabel('t')
        ax3.grid(True)

        plot.save_fig()