Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
WindEnergyToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
toolbox
WindEnergyToolbox
Commits
18cb4d1f
There was a problem fetching the pipeline summary.
Commit
18cb4d1f
authored
8 years ago
by
David Verelst
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.windenergy.dtu.dk:toolbox/WindEnergyToolbox
parents
14f1a1e5
3a4cd818
No related branches found
No related tags found
No related merge requests found
Pipeline
#
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
AUTHORS.rst
+2
-1
2 additions, 1 deletion
AUTHORS.rst
wetb/prepost/GenerateDLCs.py
+262
-0
262 additions, 0 deletions
wetb/prepost/GenerateDLCs.py
wetb/prepost/dlcdefs.py
+4
-2
4 additions, 2 deletions
wetb/prepost/dlcdefs.py
wetb/prepost/windIO.py
+18
-3
18 additions, 3 deletions
wetb/prepost/windIO.py
with
286 additions
and
6 deletions
AUTHORS.rst
+
2
−
1
View file @
18cb4d1f
...
...
@@ -3,4 +3,5 @@ Developers
==========
* Mads Mølgaard Pedersen
* David Verelst
* David R.S. Verelst
* Carlo Tibaldi
This diff is collapsed.
Click to expand it.
wetb/prepost/GenerateDLCs.py
0 → 100644
+
262
−
0
View file @
18cb4d1f
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 20 10:11:06 2015
@author: tlbl
"""
from
__future__
import
print_function
from
__future__
import
division
from
__future__
import
unicode_literals
from
__future__
import
absolute_import
# arctan and pi are required because they are in the formulas that are
# evaluated
from
numpy
import
floor
,
arctan
,
pi
import
pandas
as
pd
import
xlrd
def
multi_for
(
iterables
):
"""
Routine to create list with combination of elements.
"""
if
not
iterables
:
yield
()
else
:
for
item
in
iterables
[
0
]:
for
rest_tuple
in
multi_for
(
iterables
[
1
:]):
yield
(
item
,)
+
rest_tuple
class
GeneralDLC
(
object
):
"""
Basic class to generate the DLC spreadsheets. It contains routines to
handle the different types of tags.
* Constants: are fixed in the current DLC, e.g. reference turbulence
\
intensity, rotor radius, reference wind speed, ....
* Variables: define the number of cases in a DLC through their combination
\
e.g. wind speed, number of turbulence seeds, yaw angle, ....
* Functions: depend on other tags e.g turbulence intensity, file name, ....
"""
def
__init__
(
self
):
pass
def
remove_from_dict
(
self
,
non_defaults
,
defaults
):
for
key
in
non_defaults
.
keys
():
try
:
del
defaults
[
key
]
except
:
pass
return
defaults
def
add_variables_tag
(
self
,
dlc
,
variables
,
variables_order
):
cases_len
=
[]
for
tag
in
variables_order
:
dlc
[
tag
]
=
[]
v
=
variables
[
tag
]
for
i
in
range
(
len
(
v
)
-
1
):
try
:
v
.
remove
(
''
)
except
:
pass
if
tag
==
'
[seed]
'
:
cases_len
.
append
(
int
(
v
[
0
]))
else
:
cases_len
.
append
(
len
(
v
))
cases_index
=
multi_for
(
list
(
map
(
range
,
cases_len
)))
for
irow
,
row
in
enumerate
(
cases_index
):
counter
=
floor
(
irow
/
len
(
variables
[
'
[wsp]
'
]))
+
1
for
icol
,
col
in
enumerate
(
row
):
if
variables_order
[
icol
]
==
'
[seed]
'
:
value
=
'
%4.4i
'
%
(
1000
*
counter
+
row
[
variables_order
.
index
(
'
[wsp]
'
)]
+
1
)
else
:
value
=
variables
[
variables_order
[
icol
]][
col
]
if
not
isinstance
(
value
,
float
)
and
not
isinstance
(
value
,
int
):
value
=
str
(
value
)
dlc
[
variables_order
[
icol
]].
append
(
value
)
def
add_constants_tag
(
self
,
dlc
,
constants
):
for
key
in
constants
.
keys
():
dlc
[
key
]
=
[
constants
[
key
]]
*
len
(
dlc
[
'
[wsp]
'
])
def
sort_formulas
(
self
,
formulas
):
# sort formulas based on their dependency
keys_list
=
sorted
(
formulas
)
for
i
in
range
(
len
(
keys_list
)):
for
ikey
,
key
in
enumerate
(
keys_list
):
formula
=
formulas
[
key
]
for
ikey2
,
key2
in
enumerate
(
keys_list
):
if
key2
in
formula
:
if
ikey
<
ikey2
:
keys_list
.
pop
(
ikey
)
keys_list
.
insert
(
ikey2
,
key
)
break
return
keys_list
def
eval_formulas
(
self
,
dlc
):
for
key
in
dlc
.
keys
():
if
isinstance
(
dlc
[
key
][
0
],
str
):
if
"
[
"
in
dlc
[
key
][
0
]:
for
key2
in
dlc
.
keys
():
for
iformula
,
formula
in
enumerate
(
dlc
[
key
]):
if
key2
in
formula
:
dlc
[
key
][
iformula
]
=
dlc
[
key
][
iformula
].
replace
(
key2
,
'
%s
'
%
dlc
[
key2
][
iformula
])
for
iformula
,
formula
in
enumerate
(
dlc
[
key
]):
formula
=
formula
.
replace
(
'
,
'
,
'
.
'
)
formula
=
formula
.
replace
(
'
;
'
,
'
,
'
)
dlc
[
key
][
iformula
]
=
eval
(
formula
)
def
add_formulas
(
self
,
dlc
,
formulas
):
keys_list
=
self
.
sort_formulas
(
formulas
)
for
fkey
in
keys_list
:
flist
=
[]
for
i
in
range
(
len
(
dlc
[
'
[wsp]
'
])):
formula
=
formulas
[
fkey
]
for
key
in
dlc
.
keys
():
if
key
in
formula
:
if
formula
[
0
]
==
'"'
:
if
key
==
'
[wsp]
'
or
key
==
'
[gridgustdelay]
'
:
fmt
=
'
%2.2i
'
elif
key
==
'
[wdir]
'
or
key
==
'
[G_phi0]
'
:
fmt
=
'
%3.3i
'
else
:
fmt
=
'
%4.4i
'
formula
=
formula
.
replace
(
key
,
fmt
%
int
(
dlc
[
key
][
i
]))
elif
key
in
formula
:
formula
=
formula
.
replace
(
key
,
'
%s
'
%
dlc
[
key
][
i
])
formula
=
formula
.
replace
(
'
,
'
,
'
.
'
)
formula
=
formula
.
replace
(
'
;
'
,
'
,
'
)
flist
.
append
(
eval
(
formula
))
dlc
[
fkey
]
=
flist
class
GenerateDLCCases
(
GeneralDLC
):
"""
Class to generate Excell sheets for each DLB case starting from a single
Excell sheet.
Parameters
----------
filename: str
Name of the excel spreadsheet containing the definition of all the
cases to generate.
folder: str
Name of the folder in which to save the DLB cases.
Example
-------
DLB = GenerateDLCCases()
DLB.execute()
"""
def
execute
(
self
,
filename
=
'
DLCs.xlsx
'
,
folder
=
''
):
book
=
xlrd
.
open_workbook
(
filename
)
nsheets
=
book
.
nsheets
# Loop through all the sheets. Each sheet correspond to a DLC.
for
isheet
in
range
(
1
,
nsheets
):
# Read all the initialization constants and functions in the
# first sheet
general_constants
=
{}
general_functions
=
{}
sheet
=
book
.
sheets
()[
0
]
for
i
in
range
(
1
,
sheet
.
ncols
):
if
sheet
.
cell_value
(
9
,
i
)
!=
''
:
general_constants
[
str
(
sheet
.
cell_value
(
9
,
i
))]
=
\
sheet
.
cell_value
(
10
,
i
)
if
sheet
.
cell_value
(
13
,
i
)
!=
''
:
general_functions
[
str
(
sheet
.
cell_value
(
13
,
i
))]
=
\
sheet
.
cell_value
(
14
,
i
)
sheet
=
book
.
sheets
()[
isheet
]
print
(
'
Sheet #%i
'
%
isheet
,
sheet
.
name
)
# Read the actual sheet.
constants
=
{}
variables
=
{}
formulas
=
{}
variables_order
=
[]
# Loop through the columns
for
i
in
range
(
sheet
.
ncols
):
if
sheet
.
cell_value
(
1
,
i
)
is
not
None
:
tag
=
str
(
sheet
.
cell_value
(
1
,
i
))
if
tag
is
not
''
:
if
sheet
.
cell_value
(
0
,
i
)
==
'
C
'
:
constants
[
tag
]
=
sheet
.
cell_value
(
2
,
i
)
if
sheet
.
cell_value
(
0
,
i
)
==
'
V
'
:
variables_order
.
append
(
tag
)
variables
[
tag
]
=
\
[
sheet
.
cell_value
(
j
,
i
)
for
j
in
range
(
2
,
sheet
.
nrows
)]
if
sheet
.
cell_value
(
0
,
i
)
==
'
F
'
:
formulas
[
tag
]
=
str
(
sheet
.
cell_value
(
2
,
i
))
dlc
=
{}
general_constants
=
self
.
remove_from_dict
(
variables
,
general_constants
)
general_constants
=
self
.
remove_from_dict
(
constants
,
general_constants
)
general_functions
=
self
.
remove_from_dict
(
formulas
,
general_functions
)
self
.
add_variables_tag
(
dlc
,
variables
,
variables_order
)
self
.
add_constants_tag
(
dlc
,
general_constants
)
self
.
add_constants_tag
(
dlc
,
constants
)
self
.
add_formulas
(
dlc
,
formulas
)
self
.
add_formulas
(
dlc
,
general_functions
)
self
.
eval_formulas
(
dlc
)
df
=
pd
.
DataFrame
(
dlc
)
df
.
to_excel
(
folder
+
sheet
.
name
+
'
.xls
'
,
index
=
False
)
class
RunTest
():
"""
Class to perform basic testing of the GenerateDLCCases class. It writes the
spreadsheets and compare them with a reference set.
"""
def
execute
(
self
):
from
pandas.util.testing
import
assert_frame_equal
a
=
GenerateDLCCases
()
a
.
execute
()
book
=
xlrd
.
open_workbook
(
'
DLCs.xlsx
'
)
nsheets
=
book
.
nsheets
for
isheet
in
range
(
1
,
nsheets
):
sheet
=
book
.
sheets
()[
isheet
]
print
(
'
Sheet #%i
'
%
isheet
,
sheet
.
name
)
book1
=
pd
.
read_excel
(
'
Reference/
'
+
sheet
.
name
+
'
.xlsx
'
)
book2
=
pd
.
read_excel
(
sheet
.
name
+
'
.xls
'
)
book2
=
book2
[
book1
.
columns
]
assert_frame_equal
(
book1
,
book2
,
check_dtype
=
False
)
if
__name__
==
'
__main__
'
:
DLB
=
GenerateDLCCases
()
DLB
.
execute
()
pass
This diff is collapsed.
Click to expand it.
wetb/prepost/dlcdefs.py
+
4
−
2
View file @
18cb4d1f
...
...
@@ -320,8 +320,10 @@ def excel_stabcon(proot, fext='xlsx', pignore=None, sheet=0,
tags_dict
[
'
[res_dir]
'
]
=
'
res/%s/
'
%
dlc_case
tags_dict
[
'
[log_dir]
'
]
=
'
logfiles/%s/
'
%
dlc_case
tags_dict
[
'
[htc_dir]
'
]
=
'
htc/%s/
'
%
dlc_case
tags_dict
[
'
[case_id]
'
]
=
tags_dict
[
'
[Case id.]
'
]
tags_dict
[
'
[time_stop]
'
]
=
tags_dict
[
'
[time stop]
'
]
if
'
[Case id.]
'
in
tags_dict
.
keys
():
tags_dict
[
'
[case_id]
'
]
=
tags_dict
[
'
[Case id.]
'
]
if
'
[time stop]
'
in
tags_dict
.
keys
():
tags_dict
[
'
[time_stop]
'
]
=
tags_dict
[
'
[time stop]
'
]
try
:
tags_dict
[
'
[turb_base_name]
'
]
=
tags_dict
[
'
[Turb base name]
'
]
except
KeyError
:
...
...
This diff is collapsed.
Click to expand it.
wetb/prepost/windIO.py
+
18
−
3
View file @
18cb4d1f
...
...
@@ -1015,19 +1015,34 @@ class LoadResults(object):
# TODO: general signal method, this is not HAWC2 specific, move out
def
calc_fatigue
(
self
,
signal
,
no_bins
=
46
,
m
=
[
3
,
4
,
6
,
8
,
10
,
12
],
neq
=
1
):
"""
signal is 1D
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
"""
try
:
sig_rf
=
rainflow_astm
(
signal
)
except
:
except
(
TypeError
)
as
e
:
print
(
e
)
return
[]
if
len
(
sig_rf
)
<
1
and
not
sig_rf
:
return
[]
hist_data
,
x
,
bin_avg
=
rfc_hist
(
sig_rf
,
no_bins
)
m
=
np
.
atleast_1d
(
m
)
eq
=
[]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment