Skip to content
Snippets Groups Projects
Commit 7873d7be authored by David Verelst's avatar David Verelst
Browse files

prepost.windIO.LoadResults: added method to calc stats+del in df format

parent a2560adb
No related branches found
No related tags found
No related merge requests found
......@@ -817,6 +817,83 @@ class LoadResults(ReadHawc2):
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
return stats
def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
"""Calculate statistics and equivalent loads for the current loaded
signal.
Parameters
----------
i0 : int, default=0
i1 : int, default=None
channels : list, default='all'
all channels are selected if set to 'all', otherwise define a list
using the unique channel defintions.
neq : int, default=1
no_bins : int, default=46
Return
------
statsdel : pd.DataFrame
Pandas DataFrame with the statistical parameters and the different
fatigue coefficients as columns, and channels as rows. As index the
unique channel name is used.
"""
stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
if statchans == 'all':
statchans = self.ch_df['unique_ch_name'].tolist()
statchis = self.ch_df['unique_ch_name'].index.values
else:
sel = self.ch_df['unique_ch_name']
statchis = self.ch_df[sel.isin(statchans)].index.values
if delchans == 'all':
delchans = self.ch_df['unique_ch_name'].tolist()
delchis = self.ch_df.index.values
else:
sel = self.ch_df['unique_ch_name']
delchis = self.ch_df[sel.isin(delchans)].index.values
# delchans has to be a subset of statchans!
if len(set(delchans) - set(statchans)) > 0:
raise ValueError('delchans has to be a subset of statchans')
tmp = np.ndarray((len(statchans), len(stats+m)))
tmp[:,:] = np.nan
m_cols = ['m=%i' % m_ for m_ in m]
statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
statsdel.index = statchans
datasel = self.sig[i0:i1,statchis]
time = self.sig[i0:i1,0]
statsdel['max'] = datasel.max(axis=0)
statsdel['min'] = datasel.min(axis=0)
statsdel['mean'] = datasel.mean(axis=0)
statsdel['std'] = datasel.std(axis=0)
statsdel['range'] = statsdel['max'] - statsdel['min']
statsdel['absmax'] = np.abs(datasel).max(axis=0)
statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)
if neq is None:
neq = self.sig[-1,0] - self.sig[0,0]
for chi, chan in zip(delchis, delchans):
signal = self.sig[i0:i1,chi]
eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
statsdel.loc[chan][m_cols] = eq
return statsdel
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment