Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
WindEnergyToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
toolbox
WindEnergyToolbox
Commits
ba25db8d
There was a problem fetching the pipeline summary.
Commit
ba25db8d
authored
9 years ago
by
mads
Browse files
Options
Downloads
Patches
Plain Diff
t
parent
9024eae2
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wetb/hawc2/tests/test_files/htcfiles/tjul.htc
+940
-0
940 additions, 0 deletions
wetb/hawc2/tests/test_files/htcfiles/tjul.htc
with
940 additions
and
0 deletions
wetb/hawc2/tests/test_files/htcfiles/tjul.htc
0 → 100644
+
940
−
0
View file @
ba25db8d
;
;this version was at some point based on: Avatar_10MW_RWT version 1, 06-08-14, Anyd, 18.09.2015 TJUL
begin simulation;
time_stop 400;
solvertype 1 ; (newmark)
on_no_convergence continue ;
; logfile ../output/DLC15_IEC61400-1Ed5/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2.log ;
logfile ../output/log/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2.log ;
begin newmark;
deltat 0.02;
end newmark;
end simulation;
;
;----------------------------------------------------------------------------------------------------------------------------------------------------------------
begin new_htc_structure;
;--------------------------------------------------------------------------------------------------
struct_inertia_output_file_name ../output/structure_check/inertias_DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2.txt;
begin main_body;
name tower ;
type timoschenko ;
nbodies 3 ;
node_distribution c2_def ;
damping_posdef 0 0 0 4.7E-03 4.7E-03 4.3E-04 ; tuned by Anyd 12/8/14
begin timoschenko_input;
filename ./data/AVATAR_10MW_RWT_tower_st_v1.dat;
set 1 1 ;
end timoschenko_input;
begin c2_def; Definition of centerline (main_body coordinates)
nsec 20;
sec 1 0 0 0.000 0 ; x,y,z,twist
sec 2 0 0 -12.293 0 ;
sec 3 0 0 -12.294 0 ;
sec 4 0 0 -24.585 0 ;
sec 5 0 0 -24.586 0 ;
sec 6 0 0 -36.878 0 ;
sec 7 0 0 -36.879 0 ;
sec 8 0 0 -49.171 0 ;
sec 9 0 0 -49.172 0 ;
sec 10 0 0 -61.463 0 ;
sec 11 0 0 -61.464 0 ;
sec 12 0 0 -73.756 0 ;
sec 13 0 0 -73.757 0 ;
sec 14 0 0 -86.049 0 ;
sec 15 0 0 -86.050 0 ;
sec 16 0 0 -98.341 0 ;
sec 17 0 0 -98.342 0 ;
sec 18 0 0 -110.634 0 ;
sec 19 0 0 -110.635 0 ;
sec 20 0 0 -123.600 0 ;
end c2_def ;
end main_body;
;
begin main_body;
name towertop ;
type timoschenko ;
nbodies 1 ;
node_distribution c2_def ;
; damping_posdef 7.50E-03 7.40E-03 7.00E-03 7.00E-03 7.00E-03 7.00E-03 ; "changed by Anyd
damping_posdef 0.0 0.0 0.0 7.00E-03 7.00E-03 7.00E-03 ;
concentrated_mass 2.0 0.0 2.6870E+00 3.50E-01 4.4604E+05 4.1060E+06 4.460E+05 7.3260E+06 ; Nacel
begin timoschenko_input;
filename ./data/DTU_10MW_RWT_Towertop_st.dat ;
set 1 2 ;
end timoschenko_input;
begin c2_def; Definition of centerline (main_body coordinates)
nsec 2;
sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist
sec 2 0.0 0.0 -2.75 0.0 ;
end c2_def ;
end main_body;
;
begin main_body;
name shaft ;
type timoschenko ;
nbodies 1 ;
node_distribution c2_def ;
; damping_posdef 8.00E-3 8.00E-03 8.00E-02 4.65E-04 4.65E-04 2.38E-02 ; "tuned by Anyd 22/2/13
damping_posdef 0.0 0.0 0.0 4.65E-04 4.65E-04 3.983E-03 ; "tuned by Anyd 23/5/13 to 31.45 l
concentrated_mass 1.0 0.0 0.0 0.0 0.0 0.0 0.0 3.751E+06 ; generator equivalent slow shaft "re_tu
concentrated_mass 5.0 0.0 0.0 0.0 1.0552E+05 0.0 0.0 3.257E+05 ; hub mass and inertia; "re_tuned
begin timoschenko_input;
filename ./data/DTU_10MW_RWT_Shaft_st.dat ;
set 1 1 ;
end timoschenko_input;
begin c2_def; Definition of centerline (main_body coordinates)
nsec 5;
sec 1 0.0 0.0 0.0 0.0 ; Tower top x,y,z,twist
sec 2 0.0 0.0 1.5 0.0 ;
sec 3 0.0 0.0 3.0 0.0 ;
sec 4 0.0 0.0 4.4 0.0 ; Main bearing
sec 5 0.0 0.0 7.1 0.0 ; Rotor centre
end c2_def ;
end main_body;
;
begin main_body;
name shaft_nonrotate ;
type timoschenko ;
nbodies 1 ;
node_distribution c2_def ;
damping_posdef 0.00E+00 0.00E+00 0.00E+00 1.0E-01 1.0E-01 1.0E-01 ;
begin timoschenko_input;
filename ./data/DTU_10MW_RWT_Shaft_st.dat ;
set 1 3; dummy light and stiff structure
end timoschenko_input;
begin c2_def;
nsec 2;
sec 1 0.0 0.0 0.0 0.0 ;
sec 2 0.0 0.0 0.1 0.0 ;
end c2_def;
end main_body;
;
begin main_body;
name hub1 ;
type timoschenko ;
nbodies 1 ;
node_distribution c2_def ;
damping_posdef 0.0 0.0 0.0 3.00E-06 3.00E-06 2.00E-05;
begin timoschenko_input;
filename ./data/DTU_10MW_RWT_Hub_st.dat ;
set 1 2 ;
end timoschenko_input;
begin c2_def; Definition of centerline (main_body coordinates)
nsec 2;
sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist
sec 2 0.0 0.0 2.8 0.0 ;
end c2_def ;
end main_body;
;
begin main_body;
name hub2 ;
copy_main_body hub1;
end main_body;
;
begin main_body;
name hub3 ;
copy_main_body hub1 ;
end main_body;
;
begin main_body;
name blade1 ;
type timoschenko ;
nbodies 10 ;
node_distribution c2_def;
; damping_posdef 0.0 0.0 0.0 2.5e-3 8.9e-4 3.2e-4 ; "Tuned by Anyd"
; damping_posdef 0.0 0.0 0.0 1.5e-3 2.45e-3 3.2e-4 ; " 3% damping tuned by Anyd 20/02/12 unable to
; damping_posdef 0.0 0.0 0.0 2.1e-3 1.9e-3 1.3e-4 ; " 3% damping tuned by Anyd 15/08/14 rev2
; damping_posdef 0.0 0.0 0.0 1.68e-3 2.25e-3 1.0e-4 ; " 3% damping tuned by Anyd 16/12/14
damping_posdef 0.0 0.0 0.0 3.36e-3 4.50e-3 2.0e-4 ; double the damping (basis: 3% damping tuned by Anyd 16/12/14)
begin timoschenko_input ;
filename ./data/AVATAR_10MW_RWT_Blade_st.dat ;
set 1 9 ;
end timoschenko_input;
begin c2_def;
nsec 27 ;
sec 1 -0.001 -0.001 0.000 -17.280 ;
sec 2 -0.005 -0.001 2.220 -17.280 ;
sec 3 -0.006 -0.000 4.440 -17.280 ;
sec 4 -0.086 0.022 6.660 -17.280 ;
sec 5 -0.231 0.069 11.039 -17.273 ;
sec 6 -0.447 0.121 15.418 -16.441 ;
sec 7 -0.690 0.161 19.797 -14.613 ;
sec 8 -0.812 0.162 24.176 -12.578 ;
sec 9 -0.891 0.158 28.555 -10.588 ;
sec 10 -0.865 0.124 32.934 -9.070 ;
sec 11 -0.833 0.112 37.313 -8.224 ;
sec 12 -0.797 0.102 41.692 -7.688 ;
sec 13 -0.760 0.093 46.071 -7.205 ;
sec 14 -0.721 0.083 50.450 -6.749 ;
sec 15 -0.683 0.075 54.829 -6.288 ;
sec 16 -0.644 0.066 59.208 -5.838 ;
sec 17 -0.606 0.058 63.587 -5.401 ;
sec 18 -0.567 0.050 67.966 -4.982 ;
sec 19 -0.529 0.044 72.345 -4.640 ;
sec 20 -0.492 0.037 76.724 -4.380 ;
sec 21 -0.456 0.032 81.103 -4.144 ;
sec 22 -0.422 0.026 85.482 -3.914 ;
sec 23 -0.392 0.021 89.861 -3.685 ;
sec 24 -0.346 0.014 94.240 -3.460 ;
sec 25 -0.307 0.010 96.190 -3.350 ;
sec 26 -0.249 0.005 98.130 -3.250 ;
sec 27 -0.089 0.006 100.080 -3.140 ;
end c2_def ;
end main_body;
;
begin main_body;
name blade2 ;
copy_main_body blade1;
end main_body;
;
begin main_body;
name blade3 ;
copy_main_body blade1 ;
end main_body;
;-------------------------------------------------------------------------------------------------------------------------------
;
begin orientation;
begin base;
body tower;
inipos 0.0 0.0 0.0 ; initial position of node 1
body_eulerang 0.0 0.0 0.0;
end base;
;
begin relative;
body1 tower last;
body2 towertop 1;
body2_eulerang 0.0 0.0 0.0;
end relative;
;
begin relative;
body1 towertop last;
body2 shaft 1;
body2_eulerang 90.0 0.0 0.0;
body2_eulerang 5.0 0.0 0.0; 5 deg tilt angle
; body2_eulerang 0.0 0.0 180.0;
mbdy2_ini_rotvec_d1 0.0 0.0 -1.0 0.7 ;
end relative;
;
begin relative; dummy non rotating hub coordinates
body1 towertop last;
body2 shaft_nonrotate 1;
body2_eulerang 90.0 0.0 0.0;
body2_eulerang 5.0 0.0 0.0; same 5 deg tilt angle as real shaft
end relative;
;
begin relative;
body1 shaft last;
body2 hub1 1;
body2_eulerang -90.0 0.0 0.0;
body2_eulerang 0.0 180.0 0.0;
body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle
end relative;
;
begin relative;
body1 shaft last;
body2 hub2 1;
body2_eulerang -90.0 0.0 0.0;
body2_eulerang 0.0 60.0 0.0;
body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle
end relative;
;
begin relative;
body1 shaft last;
body2 hub3 1;
body2_eulerang -90.0 0.0 0.0;
body2_eulerang 0.0 -60.0 0.0;
body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle
end relative;
;
begin relative;
body1 hub1 last;
body2 blade1 1;
body2_eulerang 0.0 0.0 0.0;
end relative;
;
begin relative;
body1 hub2 last;
body2 blade2 1;
body2_eulerang 0.0 0.0 0.0;
end relative;
;
begin relative;
body1 hub3 last;
body2 blade3 1;
body2_eulerang 0.0 0.0 0.0;
end relative;
;
end orientation;
;-------------------------------------------------------------------------------------------------------------------------------
begin constraint;
;
begin fix0; fixed to ground in translation and rotation of node 1
body tower;
end fix0;
;
begin fix1;
body1 tower last ;
body2 towertop 1;
end fix1;
;
begin bearing1; free bearing
name shaft_rot;
body1 towertop last;
body2 shaft 1;
bearing_vector 2 0.0 0.0 -1.0; x=coo (0=global.1=body1.2=body2) vector in body2 coordinates where the free rotation is present
end bearing1;
;
;[Rotor locked] begin bearing3; free bearing
;[Rotor locked] name shaft_rot;
;[Rotor locked] body1 towertop last;
;[Rotor locked] body2 shaft 1;
;[Rotor locked] bearing_vector 2 0.0 0.0 -1.0; x=coo (0=global.1=body1.2=body2) vector in body2 coordinates where the free rotation is present
;[Rotor locked] omegas 0.0 ;
;[Rotor locked] end bearing3;
;
begin fix1;
body1 tower last ;
body2 shaft_nonrotate 1;
end fix1;
;
begin fix1;
body1 shaft last ;
body2 hub1 1;
end fix1;
;
begin fix1;
body1 shaft last ;
body2 hub2 1;
end fix1;
;
begin fix1;
body1 shaft last ;
body2 hub3 1;
end fix1;
;
begin bearing2;
name pitch1;
body1 hub1 last;
body2 blade1 1;
bearing_vector 2 0.0 0.0 -1.0;
end bearing2;
;
begin bearing2;
name pitch2;
body1 hub2 last;
body2 blade2 1;
bearing_vector 2 0.0 0.0 -1.0;
end bearing2;
;
begin bearing2;
name pitch3;
body1 hub3 last;
body2 blade3 1;
bearing_vector 2 0.0 0.0 -1.0;
end bearing2;
end constraint;
;
end new_htc_structure;
;----------------------------------------------------------------------------------------------------------------------------------------------------------------
begin wind ;
density 1.225 ;
wsp 8 ;
tint 0.0010 ;
horizontal_input 1 ;
; windfield_rotations 0 8.0 0.0 ; yaw, tilt (positive=upflow=wind coming from below), rotation
windfield_rotations 0 0.0 0.0 ; yaw, tilt (positive=upflow=wind coming from below), rotation
center_pos0 0.0 0.0 -127.0 ; hub heigth
shear_format 3 0.2 ;
turb_format 0 ; 0=none, 1=mann,2=flex
tower_shadow_method 3 ; 0=none, 1=potential flow, 2=jet
; scale_time_start 100 ;
wind_ramp_factor 0.0 100 1.000 1.0 ;
; iec_gust ews 0.0141 0.00 310 12 ;
;
begin turb_export;
filename_u ../output/export_wind/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2_u.bin ;
filename_v ../output/export_wind/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2_v.bin ;
filename_w ../output/export_wind/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2_w.bin ;
samplefrq 50;
nsteps 60;
box_dim_v 256 0.9;
box_dim_w 256 0.9;
time_start 300 ;
end turb_export;
;-------------------------------------------------------------------------------
begin wakes;
nsource 1 ;
source_pos 102.88 -1646.08 -127.0 ;
tint_meander 0.0010 ;
op_data 0.768 3.38 ; 1.8 -23.1 ;1.87 0.0 rad/sec, pitch [grader] opstrøms;
write_final_deficits ../output/deficits/deficit_wsp8_D8 ;
begin mann_meanderturb ;
create_turb_parameters 29.4 1.0 3.9 108 0.0 ; L, alfaeps,gamma,seed, highfrq compensation
filename_u ../turb/wake-meander/meand_wsp08_s0108_T100u.bin ;
filename_v ../turb/wake-meander/meand_wsp08_s0108_T100v.bin ;
filename_w ../turb/wake-meander/meand_wsp08_s0108_T100w.bin ;
box_dim_u 8192 0.097656 ;
box_dim_v 32 90 ;
box_dim_w 32 90 ;
end mann_meanderturb;
;
; begin mann_microturb ;
; create_turb_parameters 8.0 1.0 0.0 108 1.0 ; L, alfaeps,gamma,seed, highfrq compensation
; filename_u ../turb/wake-micro/smallturb_wsp08_s0108_T100u.bin ; wake-turbulence
; filename_v ../turb/wake-micro/smallturb_wsp08_s0108_T100v.bin ;
; filename_w ../turb/wake-micro/smallturb_wsp08_s0108_T100w.bin ;
; box_dim_u 128 1.0 ;
; box_dim_v 128 1.0 ;
; box_dim_w 128 1.0 ;
; end mann_microturb;
end wakes;
;-----------------------------------------------------------------
begin mann ;
create_turb_parameters 29.4 1.0 3.9 108 1.0 ; L, alfaeps, gamma, seed, highfrq compensation
filename_u ../turb/turb_wsp08_s0108_T100u.bin ;
filename_v ../turb/turb_wsp08_s0108_T100v.bin ;
filename_w ../turb/turb_wsp08_s0108_T100w.bin ;
box_dim_u 8192 0.097656 ;
box_dim_v 32 7.5;
box_dim_w 32 7.5;
end mann ;
;
begin tower_shadow_potential_2;
tower_mbdy_link tower;
nsec 2;
radius 0.0 4.15 ;
radius 129.3 2.75 ; (radius)
end tower_shadow_potential_2;
end wind;
;
begin aerodrag ;
begin aerodrag_element ;
mbdy_name tower;
aerodrag_sections uniform 10 ;
nsec 2 ;
sec 0.0 0.6 8.3 ; tower bottom
sec 129.3 0.6 5.5 ; tower top (diameter)
end aerodrag_element;
;
begin aerodrag_element ; Nacelle drag side
mbdy_name shaft;
aerodrag_sections uniform 2 ;
nsec 2 ;
sec 0.0 0.8 10.0 ;
sec 7.01 0.8 10.0 ;
end aerodrag_element;
end aerodrag;
;
begin aero ;
nblades 3;
hub_vec shaft -3 ; rotor rotation vector (normally shaft composant directed from pressure to sustion side)
link 1 mbdy_c2_def blade1;
link 2 mbdy_c2_def blade2;
link 3 mbdy_c2_def blade3;
ae_filename ./data/AVATAR_10MW_RWT_ae.dat ;
pc_filename ./data/AVATAR_10MW_RWT_pc_hama_v1.dat ;
induction_method 1 ; 0=none, 1=normal
aerocalc_method 1 ; 0=ingen aerodynamic, 1=med aerodynamic
aero_distribution ae_file 1 ;
ae_sets 1 1 1;
tiploss_method 1 ; 0=none, 1=prandtl
dynstall_method 2 ; 0=none, 1=stig øye method,2=mhh method
;
end aero ;
;-------------------------------------------------------------------------------------------------
begin dll;
;
begin type2_dll;
name risoe_controller ;
filename ./control/risoe_controller.dll ;
dll_subroutine_init init_regulation ;
dll_subroutine_update update_regulation ;
arraysizes_init 53 1 ;
arraysizes_update 12 100 ;
begin init ;
; Overall parameters
constant 1 10000.0 ; Rated power [kW]
constant 2 0.628 ; Minimum rotor speed [rad/s]
constant 3 1.005 ; Rated rotor speed [rad/s]
constant 4 15.6E+06 ; Maximum allowable generator torque [Nm]
constant 5 100.0 ; Minimum pitch angle, theta_min [deg],
; if |theta_min|>90, then a table of <wsp,theta_min> is read ;
; from a file named 'wpdata.n', where n=int(theta_min)
constant 6 90.0 ; Maximum pitch angle [deg]
constant 7 10.0 ; Maximum pitch velocity operation [deg/s]
constant 8 0.4 ; Frequency of generator speed filter [Hz]
constant 9 0.7 ; Damping ratio of speed filter [-]
constant 10 1.64 ; Frequency of free-free DT torsion mode [Hz], if zero no notch filter used
; Partial load control parameters
constant 11 0.103562E+08 ; Optimal Cp tracking K factor [Nm/(rad/s)^2], ;
; Qg=K*Omega^2, K=eta*0.5*rho*A*Cp_opt*R^3/lambda_opt^3
constant 12 0.105601E+09 ; Proportional gain of torque controller [Nm/(rad/s)]
constant 13 0.236968E+08 ; Integral gain of torque controller [Nm/rad]
constant 14 0.0 ; Differential gain of torque controller [Nm/(rad/s^2)]
; Full load control parameters
;
; CONSTANT TORQUE STRATEGY
; constant 15 2 ; Generator control switch [1=constant power, 2=constant torque]
; constant 16 0.883476 ; Proportional gain of pitch controller [rad/(rad/s)]
;
; CONSTANT POWER STRATEGY
constant 15 1 ; Generator control switch [1=constant power, 2=constant torque]
constant 16 0.810089 ; Proportional gain of pitch controller [rad/(rad/s)]
;
constant 17 0.237902 ; Integral gain of pitch controller [rad/rad]
constant 18 0.0 ; Differential gain of pitch controller [rad/(rad/s^2)]
constant 19 0.4e-9 ; Proportional power error gain [rad/W]
constant 20 0.4e-9 ; Integral power error gain [rad/(Ws)]
constant 21 9.74141 ; Coefficient of linear term in aerodynamic gain scheduling, KK1 [deg]
constant 22 617.05523 ; Coefficient of quadratic term in aerodynamic gain scheduling, KK2 [deg^2] &
; (if zero, KK1 = pitch angle at double gain)
constant 23 1.3 ; Relative speed for double nonlinear gain [-]
; Cut-in simulation parameters
constant 24 1 ; Cut-in time [s]
constant 25 1.0 ; Time delay for soft start of torque [1/1P]
; Cut-out simulation parameters
constant 26 10000 ; Cut-out time [s]
constant 27 5.0 ; Time constant for linear torque cut-out [s]
constant 28 1 ; Stop type [1=normal, 2=emergency]
constant 29 1.0 ; Time delay for pitch stop after shut-down signal [s]
constant 30 10 ; Maximum pitch velocity during initial period of stop [deg/s]
constant 31 3.0 ; Time period of initial pitch stop phase [s] (maintains pitch speed specified in constant 30)
constant 32 5 ; Maximum pitch velocity during final phase of stop [deg/s]
; Expert parameters (keep default values unless otherwise given)
constant 33 2.0 ; Lower angle above lowest minimum pitch angle for switch [deg]
constant 34 2.0 ; Upper angle above lowest minimum pitch angle for switch [deg], if equal then hard switch
constant 35 95.0 ; Ratio between filtered speed and reference speed for fully open torque limits [%]
constant 36 2.0 ; Time constant of 1st order filter on wind speed used for minimum pitch [1/1P]
constant 37 1.0 ; Time constant of 1st order filter on pitch angle used for gain scheduling [1/1P]
; Drivetrain damper
constant 38 0.0 ; Proportional gain of active DT damper [Nm/(rad/s)], requires frequency in input 10
; Over speed
constant 39 25.0 ; Overspeed percentage before initiating turbine controller alarm (shut-down) [%]
; Additional non-linear pitch control term (not used when all zero)
constant 40 0.0 ; Err0 [rad/s]
constant 41 0.0 ; ErrDot0 [rad/s^2]
constant 42 0.0 ; PitNonLin1 [rad/s]
; Storm control command
constant 43 28.0 ; Wind speed 'Vstorm' above which derating of rotor speed is used [m/s]
constant 44 28.0 ; Cut-out wind speed (only used for derating of rotor speed in storm) [m/s]
; Safety system parameters
constant 45 25.0 ; Overspeed percentage before initiating safety system alarm (shut-down) [%]
constant 46 1.5 ; Max low-pass filtered tower top acceleration level [m/s^2] - max in DLC 1.3=1.1 m/s^2
; Turbine parameter
constant 47 205.8 ; Nominal rotor diameter [m]
; Parameters for rotor inertia reduction in variable speed region
constant 48 0.0 ; Proportional gain on rotor acceleration in variable speed region [Nm/(rad/s^2)] (not used when zero)
; Parameters for alternative partial load controller with PI regulated TSR tracking
constant 49 0.0 ; Optimal tip speed ratio [-] (only used when K=constant 11 = 0 otherwise Qg=K*Omega^2 is used)
; Parameters for adding aerodynamic drivetrain damping on gain scheduling
constant 50 0.0 ; Proportional gain of aerodynamic DT damping [Nm/(rad/s)]
constant 51 0.0 ; Coefficient of linear term in aerodynamic DT damping scheduling, KK1 [deg]
constant 52 0.0 ; Coefficient of quadratic term in aerodynamic DT damping scheduling, KK2 [deg^2]
constant 53 100.0 ; Rated wind speed (used for shut-down criteria)
end init ;
;
begin output ;
general time ; [s]
constraint bearing1 shaft_rot 1 only 2 ; Drivetrain speed [rad/s]
constraint bearing2 pitch1 1 only 1; [rad]
constraint bearing2 pitch2 1 only 1; [rad]
constraint bearing2 pitch3 1 only 1; [rad]
wind free_wind 1 0.0 0.0 -127.0 ; Global coordinates at hub height
dll inpvec 2 2 ; Elec. power from generator servo .dll
dll inpvec 2 8 ; Grid state flag from generator servo .dll
mbdy state acc tower 10 1.0 global only 1 ; Tower top x-acceleration [m/s^2]
mbdy state acc tower 10 1.0 global only 2 ; Tower top y-acceleration [m/s^2]
end output;
end type2_dll;
;
begin type2_dll;
name generator_servo ;
filename ./control/generator_servo.dll ;
dll_subroutine_init init_generator_servo ;
dll_subroutine_update update_generator_servo ;
arraysizes_init 7 1 ;
arraysizes_update 4 8 ;
begin init ;
constant 1 5.0 ;20.0 ; Frequency of 2nd order servo model of generator-converter system [Hz]
constant 2 0.9 ; Damping ratio 2nd order servo model of generator-converter system [-]
constant 3 15.6E+06 ; Maximum allowable LSS torque (pull-out torque) [Nm]
constant 4 0.94 ; Generator efficiency [-]
constant 5 1.0 ; Gearratio [-]
constant 6 0.0 ; Time for half value in softstart of torque [s]
constant 7 10000 ; Time for grid loss [s]
end init ;
;
begin output;
general time ; Time [s]
dll inpvec 1 1 ; Electrical torque reference [Nm]
constraint bearing1 shaft_rot 1 only 2; Generator LSS speed [rad/s]
mbdy momentvec shaft 1 1 shaft only 3 ; Shaft moment [kNm] (Qshaft)
end output;
;
begin actions;
mbdy moment_int shaft 1 -3 shaft towertop 2 ; Generator LSS torque [Nm]
end actions;
end type2_dll;
;
begin type2_dll;
name mech_brake ;
filename ./control/mech_brake.dll ;
dll_subroutine_init init_mech_brake ;
dll_subroutine_update update_mech_brake ;
arraysizes_init 7 1 ;
arraysizes_update 4 6 ;
begin init ;
constant 1 5.22535E+06 ; Fully deployed maximum brake torque [Nm] (0.6*max torque) (9.36E+06 for INNWIND)
constant 2 100.0 ; Parameter alpha used in Q = tanh(omega*alpha), typically 1e2/Omega_nom
constant 3 0.5 ; Delay time for before brake starts to deploy [s]
constant 4 0.74 ; Time for brake to become fully deployed [s]
end init ;
;
begin output;
general time ; Time [s]
constraint bearing1 shaft_rot 1 only 2 ; Generator LSS speed [rad/s]
dll inpvec 1 25 ; Command to deploy mechanical disc brake [0,1]
end output;
;
begin actions;
mbdy moment_int shaft 1 -3 shaft towertop 2 ; Generator LSS torque [Nm]
end actions;
end type2_dll;
;
begin type2_dll;
name servo_with_limits ;
filename ./control/servo_with_limits.dll ;
dll_subroutine_init init_servo_with_limits ;
dll_subroutine_update update_servo_with_limits ;
arraysizes_init 10 1 ;
arraysizes_update 5 9 ;
begin init ;
constant 1 3 ; Number of blades [-]
constant 2 1.0 ; Frequency of 2nd order servo model of pitch system [Hz]
constant 3 0.7 ; Damping ratio 2nd order servo model of pitch system [-]
constant 4 10.0 ; Max. pitch speed [deg/s]
constant 5 15.0 ; Max. pitch acceleration [deg/s^2]
constant 6 -5.0 ; Min. pitch angle [deg]
constant 7 90.0 ; Max. pitch angle [deg]
constant 8 10000 ; Time for pitch runaway [s]
constant 9 10000 ; Time for stuck blade 1 [s]
constant 10 0 ; Angle of stuck blade 1 [deg]
end init ;
begin output;
general time ; Time [s]
dll inpvec 1 2 ; Pitch1 demand angle [rad]
dll inpvec 1 3 ; Pitch2 demand angle [rad]
dll inpvec 1 4 ; Pitch3 demand angle [rad]
dll inpvec 1 26 ; Flag for emergency pitch stop [0=off/1=on]
end output;
;
begin actions;
constraint bearing2 angle pitch1 ; Angle pitch1 bearing [rad]
constraint bearing2 angle pitch2 ; Angle pitch2 bearing [rad]
constraint bearing2 angle pitch3 ; Angle pitch3 bearing [rad]
end actions;
end type2_dll;
end dll;
;
;----------------------------------------------------------------------------------------------------------------------------------------------------------------
;
begin output;
; filename ../output/res/DLC15_IEC61400-1Ed5/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2 ;
filename ../output/res/DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2 ;
time 300 400 ;
data_format hawc_binary;
buffer 1 ;
;
general time;
constraint bearing1 shaft_rot 2; angle and angle velocity
constraint bearing2 pitch1 5; angle and angle velocity
constraint bearing2 pitch2 5; angle and angle velocity
constraint bearing2 pitch3 5; angle and angle velocity
aero omega ;
aero torque;
aero power;
aero thrust;
wind free_wind 1 0.0 0.0 -127.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
; non rotating coordinates shaft tip: equivalent to stationary hub in BLADED
mbdy momentvec shaft 3 2 shaft_nonrotate # non rotating shaft tip ;
mbdy forcevec shaft 3 2 shaft_nonrotate # non rotating shaft tip ;
; Moments:
mbdy momentvec tower 1 1 tower # tower base ;
mbdy momentvec tower 19 2 tower # tower yaw bearing ;
mbdy momentvec shaft 4 1 shaft # main bearing ;
mbdy momentvec blade1 3 2 blade1 # blade 1 root ;
mbdy momentvec blade2 3 2 blade2 # blade 2 root ;
mbdy momentvec blade3 3 2 blade3 # blade 3 root ;
; blade 2,3 root section loads
mbdy momentvec blade2 3 2 local # blade 2 section root;
mbdy momentvec blade3 3 2 local # blade 3 section root;
; blade 1 sectional loads in local coordinates
mbdy momentvec blade1 2 2 local # blade 1 section;
mbdy momentvec blade1 3 2 local # blade 1 section root;
mbdy momentvec blade1 4 2 local # blade 1 section;
mbdy momentvec blade1 5 2 local # blade 1 section;
mbdy momentvec blade1 6 2 local # blade 1 section;
mbdy momentvec blade1 7 2 local # blade 1 section;
mbdy momentvec blade1 8 2 local # blade 1 section;
mbdy momentvec blade1 9 2 local # blade 1 section;
mbdy momentvec blade1 10 2 local # blade 1 section;
mbdy momentvec blade1 11 2 local # blade 1 section;
mbdy momentvec blade1 12 2 local # blade 1 section;
mbdy momentvec blade1 13 2 local # blade 1 section;
mbdy momentvec blade1 14 2 local # blade 1 section;
mbdy momentvec blade1 15 2 local # blade 1 section;
mbdy momentvec blade1 16 2 local # blade 1 section;
mbdy momentvec blade1 17 2 local # blade 1 section;
mbdy momentvec blade1 18 2 local # blade 1 section;
mbdy momentvec blade1 19 2 local # blade 1 section;
mbdy momentvec blade1 20 2 local # blade 1 section;
mbdy momentvec blade1 21 2 local # blade 1 section;
mbdy momentvec blade1 22 2 local # blade 1 section;
mbdy momentvec blade1 23 2 local # blade 1 section;
mbdy momentvec blade1 24 2 local # blade 1 section;
mbdy momentvec blade1 25 2 local # blade 1 section;
mbdy momentvec blade1 26 2 local # blade 1 section;
; blade root out and in of plane forces
mbdy momentvec blade1 3 2 hub1 # blade 1 root ;
mbdy momentvec blade2 3 2 hub2 # blade 2 root ;
mbdy momentvec blade3 3 2 hub3 # blade 3 root ;
; mbdy momentvec blade1 14 1 local # blade 1 50% local e coo ;
; mbdy momentvec blade2 14 1 local # blade 2 50% local e coo ;
; mbdy momentvec blade3 14 1 local # blade 3 50% local e coo ;
; Displacements and accellerations
mbdy state pos tower 19 1.0 global only 1 # Tower top FA displ;
mbdy state pos tower 19 1.0 global only 2 # Tower top SS displ;
mbdy state acc tower 19 1.0 global only 1 # Tower top FA acc;
mbdy state acc tower 19 1.0 global only 2 # Tower top SS acc;
;
mbdy state pos blade1 26 1.0 global # gl blade 1 tip pos ;
mbdy state pos blade2 26 1.0 global # gl blade 2 tip pos ;
mbdy state pos blade3 26 1.0 global # gl blade 3 tip pos ;
mbdy state pos blade1 26 1.0 blade1 # blade 1 tip pos ;
mbdy state pos blade2 26 1.0 blade2 # blade 2 tip pos ;
mbdy state pos blade3 26 1.0 blade3 # blade 3 tip pos ;
;
mbdy state pos tower 5 0.00 global ; [1,2,3]. Tower position: 24.58 m
;
; elastic twist (torsional deformation) along the blade
aero tors_ang 1 45.56;
aero tors_ang 1 59.19;
aero tors_ang 1 70.87;
aero tors_ang 1 80.61;
aero tors_ang 1 84.50;
aero tors_ang 1 88.40;
aero tors_ang 1 92.29;
aero tors_ang 1 96.19;
aero tors_ang 1 98.13;
aero tors_ang 1 102.08; tip
;
; - Monitor Aerodynamics - ;
aero windspeed 3 1 1 72.5;
aero windspeed 3 1 2 72.5;
aero windspeed 3 1 3 72.5;
aero alfa 1 72.5;
aero alfa 2 72.5;
aero alfa 3 72.5;
aero cl 1 72.5;
aero cl 2 72.5;
aero cl 3 72.5;
aero cd 1 72.5;
aero cd 2 72.5;
aero cd 3 72.5;
; - Main Controller -
; Output to controller
; dll outvec 1 1 # time;
; dll outvec 1 2 # slow speed shaft rad/s;
; dll outvec 1 3 # pitch angle 1;
; dll outvec 1 4 # pitch angle 2;
; dll outvec 1 5 # pitch angle 3;
; dll outvec 1 6 # WSP_x_global;
; dll outvec 1 7 # WSP_y_global;
; dll outvec 1 8 # WSP_z_global;
; dll outvec 1 9 # Elec. pwr ;
; dll outvec 1 10 # Grid flag ;
; Input from controller
dll inpvec 1 1 # Generator torque reference [Nm] ;
dll inpvec 1 2 # Pitch angle reference of blade 1 [rad] ;
dll inpvec 1 3 # Pitch angle reference of blade 2 [rad] ;
dll inpvec 1 4 # Pitch angle reference of blade 3 [rad] ;
; dll inpvec 1 5 # Power reference [W] ;
; dll inpvec 1 6 # Filtered wind speed [m/s] ;
; dll inpvec 1 7 # Filtered rotor speed [rad/s];
; dll inpvec 1 8 # Filtered rotor speed error for torque [rad/s];
; dll inpvec 1 9 # Bandpass filtered rotor speed [rad/s];
; dll inpvec 1 10 # Proportional term of torque contr. [Nm] ;
; dll inpvec 1 11 # Integral term of torque controller [Nm] ;
; dll inpvec 1 12 # Minimum limit of torque [Nm] ;
; dll inpvec 1 13 # Maximum limit of torque [Nm] ;
dll inpvec 1 14 # Torque limit switch based on pitch [-] ;
; dll inpvec 1 15 # Filtered rotor speed error for pitch [rad/s];
; dll inpvec 1 16 # Power error for pitch [W] ;
; dll inpvec 1 17 # Proportional term of pitch controller [rad] ;
; dll inpvec 1 18 # Integral term of pitch controller [rad] ;
; dll inpvec 1 19 # Minimum limit of pitch [rad] ;
; dll inpvec 1 20 # Maximum limit of pitch [rad] ;
dll inpvec 1 21 # Torque reference from DT dammper [Nm] ;
dll inpvec 1 22 # Status signal [-] ;
; dll inpvec 1 23 # Total added pitch rate [rad/s] ;
dll inpvec 1 24 # Filtered Mean pitch for gain sch [rad] ;
dll inpvec 1 25 # Flag for mechnical brake [0=off/1=on] ;
dll inpvec 1 26 # Flag for emergency pitch stop [0=off/1=on] ;
dll inpvec 1 27 # LP filtered acceleration level [m/s^2] ;
; ; Output to generator model
; dll outvec 2 1 # time ;
; dll outvec 2 2 # Electrical torque reference [Nm] ;
; dll outvec 2 3 # omega LSS ;
; Input from generator model
dll inpvec 2 1 # Mgen LSS [Nm];
dll inpvec 2 2 # Pelec W ;
dll inpvec 2 3 # Mframe ;
dll inpvec 2 4 # Mgen HSS ;
dll inpvec 2 5 # Generator Pmech kW ;
dll inpvec 2 6 # Filtered Gen speed ;
dll inpvec 2 7 # Resulting Eff ;
dll inpvec 2 8 # Grid flag ;
; Output to mechanical brake
dll inpvec 3 1 # Brake torque [Nm] ;
; ; Input from mechanical brake
; dll outvec 3 1 # Time [s] ;
; dll outvec 3 2 # Generator LSS speed [rad/s] ;
; dll outvec 3 3 # Deploy brake ;
; ; Output to pitch servo
; dll outvec 4 1 # time;
; dll outvec 4 2 # pitchref 1;
; dll outvec 4 3 # pitchref 2;
; dll outvec 4 4 # pitchref 3;
; dll outvec 4 5 # Emerg. stop;
; Input from pitch servo
dll inpvec 4 1 # pitch 1;
dll inpvec 4 2 # pitch 2;
dll inpvec 4 3 # pitch 3;
end output;
;
begin output;
; filename ../output/res/DLC15_IEC61400-1Ed5/short_DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2 ;
filename ../output/res/short_DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2 ;
time 300 400 ;
data_format hawc_ascii;
buffer 1 ;
;
general time;
aero azimuth 1;
constraint bearing1 shaft_rot 2; angle and angle velocity
constraint bearing2 pitch1 5; angle and angle velocity
constraint bearing2 pitch2 5; angle and angle velocity
constraint bearing2 pitch3 5; angle and angle velocity
wind free_wind 1 0.0 0.0 -127.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
; Tower
mbdy momentvec tower 1 1 tower # tower base ;
mbdy forcevec tower 1 1 tower # tower base ;
mbdy momentvec tower 19 2 tower # tower yaw bearing ;
mbdy forcevec tower 19 2 tower # tower yaw bearing ;
mbdy momentvec towertop 1 2 towertop # tower top ;
mbdy forcevec towertop 1 2 towertop # tower top ;
mbdy state pos tower 19 1.0 global only 1 # Tower yaw bearing FA displ;
mbdy state pos tower 19 1.0 global only 2 # Tower yaw bearing SS displ;
mbdy state pos towertop 1 1.0 global only 1 # Tower top FA displ;
mbdy state pos towertop 1 1.0 global only 2 # Tower top SS displ;
; Shaft
mbdy momentvec shaft 1 1 shaft # rotating shaft at top of tower ;
mbdy forcevec shaft 1 1 shaft # rotating shaft at top of tower ;
mbdy momentvec shaft 1 1 shaft_nonrotate # non rotating shaft at top of tower ;
mbdy forcevec shaft 1 1 shaft_nonrotate # non rotating shaft at top of tower ;
mbdy momentvec shaft 4 2 shaft_nonrotate # non rotating shaft at hub ;
mbdy forcevec shaft 4 2 shaft_nonrotate # non rotating shaft at hub ;
mbdy momentvec shaft 4 2 shaft # rotating shaft at hub ;
mbdy forcevec shaft 4 2 shaft # rotating shaft at hub ;
; 30% blade
aero alfa 1 30.0;
aero inflow_angle 1 30.0;
aero induc 4 1 2 30.0;
aero induc 4 1 1 30.0;
aero vrel 1 30.0;
aero cl 1 30.0;
aero cd 1 30.0;
; 50% blade
aero alfa 1 50.0;
aero inflow_angle 1 50.0;
aero induc 4 1 2 50.0;
aero induc 4 1 1 50.0;
aero vrel 1 50.0;
aero cl 1 50.0;
aero cd 1 50.0;
; 70% blade
aero alfa 1 70.0;
aero inflow_angle 1 70.0;
aero induc 4 1 2 70.0;
aero induc 4 1 1 70.0;
aero vrel 1 70.0;
aero cl 1 70.0;
aero cd 1 70.0;
; 95% blade
aero alfa 1 95.0;
aero inflow_angle 1 95.0;
aero induc 4 1 2 95.0;
aero induc 4 1 1 95.0;
aero vrel 1 95.0;
aero cl 1 95.0;
aero cd 1 95.0;
aero thrust;
aero torque;
aero power;
; r=0%
mbdy momentvec blade1 1 1 hub1 # blade 1 section;
mbdy state pos blade1 1 0.0 hub1 # blade 1 tip pos blade coo ;
aero rotation_e 1 1 0 2;
aero rotation_e 1 2 0 2;
aero rotation_e 1 3 0 2;
aero tors_e 1 0;
; r=30%
mbdy momentvec blade1 9 1 hub1 # blade 1 section;
mbdy state pos blade1 9 0.0 blade1 # blade 1 tip pos blade coo ;
aero rotation_e 1 1 30 2;
aero rotation_e 1 2 30 2;
aero rotation_e 1 3 30 2;
aero tors_e 1 30;
; r=50%
mbdy momentvec blade1 14 1 hub1 # blade 1 section;
mbdy state pos blade1 14 0.0 blade1 # blade 1 tip pos blade coo ;
aero rotation_e 1 1 50 2;
aero rotation_e 1 2 50 2;
aero rotation_e 1 3 50 2;
aero tors_e 1 50;
; r=70%
mbdy momentvec blade1 18 1 hub1 # blade 1 section;
mbdy state pos blade1 18 0.0 blade1 # blade 1 tip pos blade coo ;
aero rotation_e 1 1 70 2;
aero rotation_e 1 2 70 2;
aero rotation_e 1 3 70 2;
aero tors_e 1 70;
; r=95%
mbdy momentvec blade1 25 1 hub1 # blade 1 section;
mbdy state pos blade1 25 0.0 blade1 # blade 1 tip pos blade coo ;
aero rotation_e 1 1 95 2;
aero rotation_e 1 2 95 2;
aero rotation_e 1 3 95 2;
aero tors_e 1 95;
end output;
;
begin output;
; filename ../output/res/DLC15_IEC61400-1Ed4/DLC15_wsp06_wdir000_s0106_phi000_halfwake_D10_export ;
filename ../output/res/wind_DLC15_wsp08_wdir000_s0108_phi000_halfwake_D8_v2 ;
; time 300 400 ;
data_format hawc_binary;
buffer 1 ;
;
general time;
wind free_wind 1 -100.0 0.0 -227.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 0.0 0.0 -227.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 100.0 0.0 -227.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 -100.0 0.0 -127.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 0.0 0.0 -127.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 100.0 0.0 -127.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 -100.0 0.0 -27.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 0.0 0.0 -27.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
wind free_wind 1 100.0 0.0 -27.0; local wind at fixed position: coo (1=global,2=non-rotation rotor coo.), pos x, pos y, pos z
end output;
;
exit;
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment