Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
WindEnergyToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
toolbox
WindEnergyToolbox
Merge requests
!88
Add ktho's standard power curve model
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Add ktho's standard power curve model
standard_power_curve_model
into
master
Overview
1
Commits
1
Pipelines
1
Changes
1
Merged
Mads M. Pedersen
requested to merge
standard_power_curve_model
into
master
6 years ago
Overview
1
Commits
1
Pipelines
1
Changes
1
Expand
1
0
Merge request reports
Viewing commit
8458d8e7
Show latest version
1 file
+
104
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
8458d8e7
Add ktho's standard power curve model
· 8458d8e7
Mads M. Pedersen
authored
6 years ago
wetb/standard_models/power_curve.py
0 → 100644
+
104
−
0
Options
import
numpy
as
np
def
standard_power_curve
(
power_norm
,
diameter
,
turbulence_intensity
=
.
1
,
shear
=
(
0
,
100
),
rho
=
1.225
,
max_cp
=
.
49
,
gear_loss_const
=
.
01
,
gear_loss_var
=
.
014
,
generator_loss
=
0.03
,
converter_loss
=
.
03
):
"""
Generate standard power curve
The method is extracted from an Excel spreadsheet made by Kenneth Thomsen, DTU Windenergy and
ported into python by Mads M. Pedersen, DTU Windenergy.
Parameters
----------
power_norm : int or float
Nominal power [kW]
diameter : int or float
Rotor diameter [m]
turbulence_intensity : float
Turbulence intensity [%]
shear : (power shear coefficient, hub height)
Power shear arguments
\n
- Power shear coeficient, alpha
\n
- Hub height [m]
rho : float optional
Density of air [kg/m^3], defualt is 1.225
max_cp : float
Maximum power coefficient
gear_loss_const : float
Constant gear loss [%]
gear_loss_var : float
Variable gear loss [%]
generator_loss : float
Generator loss [%]
converter_loss : float
Examples
--------
wsp, power = standard_power_curve(10000, 178.3)
plot(wsp, power)
show()
"""
area
=
(
diameter
/
2
)
**
2
*
np
.
pi
wsp_lst
=
np
.
arange
(
0.5
,
25
,
.
5
)
sigma_lst
=
wsp_lst
*
turbulence_intensity
def
norm_dist
(
x
,
my
,
sigma
):
if
turbulence_intensity
>
0
:
return
1
/
np
.
sqrt
(
2
*
np
.
pi
*
sigma
**
2
)
*
np
.
exp
(
-
(
x
-
my
)
**
2
/
(
2
*
sigma
**
2
))
else
:
return
x
==
my
p_aero
=
.
5
*
rho
*
area
*
wsp_lst
**
3
*
max_cp
/
1000
# calc power - gear, generator and conv loss
# gear_loss = gear_loss_const * power_norm + gear_loss_var * p_aero
# p_gear = p_aero - gear_loss
# p_gear[p_gear < 0] = 0
# gen_loss = generator_loss * p_gear
# p_gen = p_gear - gen_loss
# converter_loss = converter_loss * p_gen
# p_raw = p_gen - converter_loss
# p_raw[p_raw > power_norm] = power_norm
p_raw
=
p_aero
-
power_loss
(
p_aero
,
power_norm
,
gear_loss_const
,
gear_loss_var
,
generator_loss
,
converter_loss
)
powers
=
[]
shear_weighted_wsp
=
[]
alpha
,
hub_height
=
shear
r
=
diameter
/
2
z
=
np
.
linspace
(
hub_height
-
r
,
hub_height
+
r
,
100
,
endpoint
=
True
)
shear_factors
=
(
z
/
hub_height
)
**
alpha
rotor_width
=
2
*
np
.
sqrt
(
r
**
2
-
(
hub_height
-
z
)
**
2
)
for
wsp
,
sigma
in
zip
(
wsp_lst
,
sigma_lst
):
shear_weighted_wsp
.
append
(
wsp
*
(
np
.
trapz
(
shear_factors
**
3
*
rotor_width
,
z
)
/
(
area
))
**
(
1
/
3
))
ndist
=
norm_dist
(
wsp_lst
,
wsp
,
sigma
)
powers
.
append
((
ndist
*
p_raw
).
sum
()
/
ndist
.
sum
())
return
wsp_lst
,
lambda
wsp
:
np
.
interp
(
wsp
,
wsp_lst
,
powers
)
return
wsp_lst
,
np
.
interp
(
shear_weighted_wsp
,
wsp_lst
,
powers
)
def
power_loss
(
power_aero
,
power_norm
,
gear_loss_const
=
.
01
,
gear_loss_var
=
.
014
,
generator_loss
=
0.03
,
converter_loss
=
.
03
):
gear_loss
=
gear_loss_const
*
power_norm
+
gear_loss_var
*
power_aero
p_gear
=
power_aero
-
gear_loss
p_gear
[
p_gear
<
0
]
=
0
gen_loss
=
generator_loss
*
p_gear
p_gen
=
p_gear
-
gen_loss
converter_loss
=
converter_loss
*
p_gen
p_electric
=
p_gen
-
converter_loss
p_electric
[
p_electric
>
power_norm
]
=
power_norm
return
power_aero
-
p_electric
if
__name__
==
'
__main__
'
:
from
matplotlib.pyplot
import
plot
,
show
plot
(
*
standard_power_curve
(
10000
,
178.3
,
0.
,
(
0
,
119
),
gear_loss_const
=
.
0
,
gear_loss_var
=
.
0
,
generator_loss
=
0.0
,
converter_loss
=
.
0
))
plot
(
*
standard_power_curve
(
10000
,
178.3
,
0.03
,
(
0
,
119
),
gear_loss_const
=
.
0
,
gear_loss_var
=
.
0
,
generator_loss
=
0.0
,
converter_loss
=
.
0
))
show
()
Loading