Forked from
toolbox / WindEnergyToolbox
1403 commits behind the upstream repository.
-
David Verelst authoredDavid Verelst authored
windIO.py 73.91 KiB
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 3 19:53:59 2014
@author: dave
"""
# always devide as floats
#print(*objects, sep=' ', end='\n', file=sys.stdout)
__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'
import os
import copy
import unittest
import struct
import math
from time import time
import codecs
import scipy
import scipy.io as sio
import scipy.integrate as integrate
import array
import numpy as np
import pandas as pd
#import sympy
# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
import fatigue
class LoadResults:
"""Read a HAWC2 result data file
Usage:
obj = LoadResults(file_path, file_name)
This class is called like a function:
HawcResultData() will read the specified file upon object initialization.
Available output:
obj.sig[timeStep,channel] : complete result file in a numpy array
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
obj.error_msg: is 'none' if everything went OK, otherwise it holds the
error
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos'] = pos
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# ch_df columns, these are created by LoadResults._unified_channel_names
cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',
'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr'])
# start with reading the .sel file, containing the info regarding
# how to read the binary file and the channel information
def __init__(self, file_path, file_name, debug=False, usecols=None,
readdata=True):
self.debug = debug
# timer in debug mode
if self.debug:
start = time()
self.file_path = file_path
# remove .log, .dat, .sel extensions who might be accedental left
if file_name[-4:] in ['.htc','.sel','.dat','.log']:
file_name = file_name[:-4]
# FIXME: since HAWC2 will always have lower case output files, convert
# any wrongly used upper case letters to lower case here
self.file_name = file_name.lower()
self.read_sel()
# create for any supported channel the
# continue if the file has been succesfully read
if self.error_msg == 'none':
# load the channel id's and scale factors
self.scale_factors = self.data_sel()
# with the sel file loaded, we have all the channel names to
# squeeze into a more consistant naming scheme
self._unified_channel_names()
# only read when asked for
if readdata:
# if there is sel file but it is empty or whatever else
# FilType will not exists
try:
# read the binary file
if self.FileType == 'BINARY':
self.read_bin(self.scale_factors, usecols=usecols)
# read the ASCII file
elif self.FileType == 'ASCII':
self.read_ascii(usecols=usecols)
else:
print('='*79)
print('unknown file type: ' + self.FileType)
print('='*79)
self.error_msg = 'error: unknown file type'
self.sig = []
except:
print('='*79)
print('couldn\'t determine FileType')
print('='*79)
self.error_msg = 'error: no file type'
self.sig = []
if self.debug:
stop = time() - start
print('time to load HAWC2 file:', stop, 's')
def read_sel(self):
# anticipate error on file reading
try:
# open file, read and close
go_sel = os.path.join(self.file_path, self.file_name + '.sel')
FILE = open(go_sel, "r")
self.lines = FILE.readlines()
FILE.close()
self.error_msg = 'none'
# error message if the file does not exists
except:
# print(26*' ' + 'ERROR'
print(50*'=')
print(self.file_path)
print(self.file_name + '.sel could not be found')
print(50*'=')
self.error_msg = 'error: file not found'
def data_sel(self):
# scan through all the lines in the file
line_nr = 1
# channel counter for ch_details
ch = 0
for line in self.lines:
# on line 9 we can read following paramaters:
if line_nr == 9:
# remove the end of line character
line = line.replace('\n','').replace('\r', '')
settings = line.split(' ')
# delete all empty string values
for k in range(settings.count('')):
settings.remove('')
# and assign proper values with correct data type
self.N = int(settings[0])
self.Nch = int(settings[1])
self.Time = float(settings[2])
self.FileType = settings[3]
self.Freq = self.N/self.Time
# prepare list variables
self.ch_details = np.ndarray(shape=(self.Nch,3),dtype='<U100')
# it seems that float64 reeds the data correctly from the file
scale_factors = scipy.zeros(self.Nch, dtype='Float64')
#self.scale_factors_dec = scipy.zeros(self.Nch, dtype='f8')
i = 0
# starting from line 13, we have the channels info
if line_nr > 12:
# read the signal details
if line_nr < 13 + self.Nch:
# remove leading and trailing whitespaces from line parts
self.ch_details[ch,0] = str(line[12:43]).strip() # chID
self.ch_details[ch,1] = str(line[43:54]).strip() # chUnits
self.ch_details[ch,2] = str(line[54:-1]).strip() # chDescr
ch += 1
# read the signal scale parameters for binary format
elif line_nr > 14 + self.Nch:
scale_factors[i] = line
# print(scale_factors[i]
#self.scale_factors_dec[i] = D.Decimal(line)
i = i + 1
# stop going through the lines if at the end of the file
if line_nr == 2*self.Nch + 14:
self.scale_factors = scale_factors
if self.debug:
print('N ', self.N)
print('Nch ', self.Nch)
print('Time ', self.Time)
print('FileType', self.FileType)
print('Freq ', self.Freq)
print('scale_factors', scale_factors.shape)
return scale_factors
break
# counting the line numbers
line_nr = line_nr + 1
def read(self, usecols=False):
"""
This whole LoadResults needs to be refactered because it is crap.
Keep the old ones for backwards compatibility
"""
if self.FileType == 'ASCII':
self.read_ascii(usecols=usecols)
elif self.FileType == 'BINARY':
self.read_bin(self.scale_factors, usecols=usecols)
def read_bin(self, scale_factors, usecols=False):
if not usecols:
usecols = list(range(0, self.Nch))
fid = open(os.path.join(self.file_path, self.file_name) + '.dat', 'rb')
self.sig = np.zeros( (self.N, len(usecols)) )
for j, i in enumerate(usecols):
fid.seek(i*self.N*2,0)
self.sig[:,j] = np.fromfile(fid, 'int16', self.N)*scale_factors[i]
def read_bin_old(self, scale_factors):
# if there is an error reading the binary file (for instance if empty)
try:
# read the binary file
go_binary = os.path.join(self.file_path, self.file_name) + '.dat'
FILE = open(go_binary, mode='rb')
# create array, put all the binary elements as one long chain in it
binvalues = array.array('h')
binvalues.fromfile(FILE, self.N * self.Nch)
FILE.close()
# convert now to a structured numpy array
# sig = np.array(binvalues, np.float)
# sig = np.array(binvalues)
# this is faster! the saved bin values are only of type int16
sig = np.array(binvalues, dtype='int16')
if self.debug: print(self.N, self.Nch, sig.shape)
# sig = np.reshape(sig, (self.Nch, self.N))
# # apperently Nch and N had to be reversed to read it correctly
# # is this because we are reading a Fortran array with Python C
# # code? so now transpose again so we have sig(time, channel)
# sig = np.transpose(sig)
# reshape the array to 2D and transpose (Fortran to C array)
sig = sig.reshape((self.Nch, self.N)).T
# create diagonal vector of size (Nch,Nch)
dig = np.diag(scale_factors)
# now all rows of column 1 are multiplied with dig(1,1)
sig = np.dot(sig,dig)
self.sig = sig
# 'file name;' + 'lnr;msg;'*(len(MsgList)) + '\n'
except:
self.sig = []
self.error_msg = 'error: reading binary file failed'
print('========================================================')
print(self.error_msg)
print(self.file_path)
print(self.file_name)
print('========================================================')
def read_ascii(self, usecols=None):
try:
go_ascii = os.path.join(self.file_path, self.file_name) + '.dat'
# self.sig = np.genfromtxt(go_ascii)
self.sig = np.loadtxt(go_ascii, usecols=usecols)
# self.sig = np.fromfile(go_ascii, dtype=np.float32, sep=' ')
# self.sig = self.sig.reshape((self.N, self.Nch))
except:
self.sig = []
self.error_msg = 'error: reading ascii file failed'
print('========================================================')
print(self.error_msg)
print(self.file_path)
print(self.file_name)
print('========================================================')
# print '========================================================'
# print 'ASCII reading not implemented yet'
# print '========================================================'
# self.sig = []
# self.error_msg = 'error: ASCII reading not implemented yet'
def reformat_sig_details(self):
"""Change HAWC2 output description of the channels short descriptive
strings, usable in plots
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
"""
# CONFIGURATION: mappings between HAWC2 and short good output:
change_list = []
change_list.append( ['original','new improved'] )
# change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
# change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
# change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
# change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
# change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
# change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
# change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )
change_list.append( ['Mx coo: blade1','blade1 flap'] )
change_list.append( ['My coo: blade1','blade1 edge'] )
change_list.append( ['Mz coo: blade1','blade1 torsion'] )
change_list.append( ['Mx coo: blade2','blade2 flap'] )
change_list.append( ['My coo: blade2','blade2 edge'] )
change_list.append( ['Mz coo: blade2','blade2 torsion'] )
change_list.append( ['Mx coo: blade3','blade3 flap'] )
change_list.append( ['My coo: blade3','blade3 edeg'] )
change_list.append( ['Mz coo: blade3','blade3 torsion'] )
change_list.append( ['Mx coo: hub1','blade1 out-of-plane'] )
change_list.append( ['My coo: hub1','blade1 in-plane'] )
change_list.append( ['Mz coo: hub1','blade1 torsion'] )
change_list.append( ['Mx coo: hub2','blade2 out-of-plane'] )
change_list.append( ['My coo: hub2','blade2 in-plane'] )
change_list.append( ['Mz coo: hub2','blade2 torsion'] )
change_list.append( ['Mx coo: hub3','blade3 out-of-plane'] )
change_list.append( ['My coo: hub3','blade3 in-plane'] )
change_list.append( ['Mz coo: hub3','blade3 torsion'] )
# this one will create a false positive for tower node nr1
change_list.append( ['Mx coo: tower','tower top momemt FA'] )
change_list.append( ['My coo: tower','tower top momemt SS'] )
change_list.append( ['Mz coo: tower','yaw-moment'] )
change_list.append( ['Mx coo: chasis','chasis momemt FA'] )
change_list.append( ['My coo: chasis','yaw-moment chasis'] )
change_list.append( ['Mz coo: chasis','chasis moment SS'] )
change_list.append( ['DLL inp 2: 2','tower clearance'] )
self.ch_details_new = np.ndarray(shape=(self.Nch,3),dtype='<U100')
# approach: look for a specific description and change it.
# This approach is slow, but will not fail if the channel numbers change
# over different simulations
for ch in range(self.Nch):
# the change_list will always be slower, so this loop will be
# inside the bigger loop of all channels
self.ch_details_new[ch,:] = self.ch_details[ch,:]
for k in range(len(change_list)):
if change_list[k][0] == self.ch_details[ch,0]:
self.ch_details_new[ch,0] = change_list[k][1]
# channel description should be unique, so delete current
# entry and stop looking in the change list
del change_list[k]
break
# self.ch_details_new = ch_details_new
def _unified_channel_names(self):
"""
Make certain channels independent from their index.
The unified channel dictionary ch_dict holds consequently named
channels as the key, and the all information is stored in the value
as another dictionary.
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
node numbers start with 0 at the root
element numbers start with 1 at the root
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos']
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
For many of the aero sensors:
'Cl', 'Cd', 'Alfa', 'Vrel'
key:
sensortype-blade_nr-pos
Cl-1-0.01
value:
ch_dict[tag]['sensortype']
ch_dict[tag]['blade_nr']
ch_dict[tag]['pos']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# save them in a dictionary, use the new coherent naming structure
# as the key, and as value again a dict that hols all the different
# classifications: (chi, channel nr), (coord, coord), ...
self.ch_dict = dict()
# some channel ID's are unique, use them
ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
'Ae rot. thrust', 'Time', 'Azi 1'])
ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
ch_aerogrid = set(['a_grid', 'am_grid'])
# also safe as df
# cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
# 'component', 'pos', 'coord', 'sensortype', 'radius',
# 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
# 'azimuth', 'flap_nr'])
df_dict = {col:[] for col in self.cols}
df_dict['ch_name'] = []
# scan through all channels and see which can be converted
# to sensible unified name
for ch in range(self.Nch):
items = self.ch_details[ch,2].split(' ')
# remove empty values in the list
items = misc.remove_items(items, '')
dll = False
# be carefull, identify only on the starting characters, because
# the signal tag can hold random text that in some cases might
# trigger a false positive
# -----------------------------------------------------------------
# check for all the unique channel descriptions
if self.ch_details[ch,0].strip() in ch_unique:
tag = self.ch_details[ch,0].strip()
channelinfo = {}
channelinfo['units'] = self.ch_details[ch,1]
channelinfo['sensortag'] = self.ch_details[ch,2]
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# or in the long description:
# 0 1 2 3 4 5 6 and up
# MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT
elif self.ch_details[ch,2].startswith('MomentM'):
coord = items[5]
bodyname = items[1].replace('Mbdy:', '')
# set nodenr to sortable way, include leading zeros
# node numbers start with 0 at the root
nodenr = '%03i' % int(items[3])
# skip the attached the component
#sensortype = items[0][:-2]
# or give the sensor type the same name as in HAWC2
sensortype = 'momentvec'
component = items[0][-1:len(items[0])]
# the tag only exists if defined
if len(items) > 6:
sensortag = ' '.join(items[6:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 and up
# Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT
elif self.ch_details[ch,2].startswith('Force'):
coord = items[6]
bodyname = items[2].replace('Mbdy:', '')
nodenr = '%03i' % int(items[4])
# skipe the attached the component
#sensortype = items[0]
# or give the sensor type the same name as in HAWC2
sensortype = 'forcevec'
component = items[1][1]
if len(items) > 7:
sensortag = ' '.join(items[7:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 8
# State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade
# 0 1 2 3 4 5 6 7 8 9+
# State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label
# State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label
elif self.ch_details[ch,2].startswith('State'):
# or self.ch_details[ch,0].startswith('euler') \
# or self.ch_details[ch,0].startswith('ax') \
# or self.ch_details[ch,0].startswith('omega') \
# or self.ch_details[ch,0].startswith('proj'):
coord = items[8]
bodyname = items[3].replace('Mbdy:', '')
# element numbers start with 1 at the root
elementnr = '%03i' % int(items[5])
zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
# skip the attached the component
#sensortype = ''.join(items[0:2])
# or give the sensor type the same name as in HAWC2
tmp = self.ch_details[ch,0].split(' ')
sensortype = tmp[0]
if sensortype.startswith('State'):
sensortype += ' ' + tmp[1]
component = items[2]
if len(items) > 8:
sensortag = ' '.join(items[9:])
else:
sensortag = ''
# and tag it
pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tagitems = (coord,bodyname,pos,sensortype,component)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# DLL CONTROL I/O
# there are two scenario's on how the channel description is formed
# the channel id is always the same though
# id for all three cases:
# DLL out 1: 3
# DLL inp 2: 3
# description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
# 0 1 2 3 4+
# yaw_control outvec 3 yaw_c input reference angle
# description case 2 ("dll inpvec 2 1" in htc output):
# 0 1 2 3 4 5 6+
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
elif self.ch_details[ch,0].startswith('DLL'):
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = self.ch_details[ch,2].replace(':','')
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
channelinfo['units'] = self.ch_details[ch,1]
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch,0].startswith('bea'):
output_type = self.ch_details[ch,0].split(' ')[1]
bearing_name = items[0]
units = self.ch_details[ch,1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name,output_type,units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch,0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch,2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
sensortype = self.ch_details[ch,0].split(',')[0]
radius = dscr_list[-1]
# is this always valid?
blade_nr = self.ch_details[ch,2].split('blade ')[1][0]
# sometimes the units for aero sensors are wrong!
units = self.ch_details[ch,1]
# there is no label option
# and tag it
tag = '%s-%s-%s' % (sensortype,blade_nr,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch,0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch,0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
units = self.ch_details[ch,1]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch,0].strip()[:5] == 'Induc':
items = self.ch_details[ch,2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
items = self.ch_details[ch,0].split(',')
coord = items[1].strip()
component = items[0][-2:]
units = self.ch_details[ch,1]
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch,2].startswith('Water'):
units = self.ch_details[ch,1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch,0].startswith('WSP gl.'):
units = self.ch_details[ch,1]
direction = self.ch_details[ch,0].split(',')[1]
tmp = self.ch_details[ch,2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch,0].startswith('WSP V'):
units = self.ch_details[ch,1].strip()
direction = self.ch_details[ch,0].split(' ')[1].strip()
blade_nr = self.ch_details[ch,2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch,2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch,2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch,0][:7] == 'setbeta':
units = self.ch_details[ch,1].strip()
blade_nr = self.ch_details[ch,2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
flap_nr = self.ch_details[ch,2].split(' ')[-1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict = {col:[] for col in cols}
df_dict['ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['ch_name'].append(ch_name)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
i_zero = int(self.sig[0,0]*self.Freq)
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1])
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_stats(self, sig, i0=0, i1=-1):
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1,:].max(axis=0)
stats['min'] = sig[i0:i1,:].min(axis=0)
stats['mean'] = sig[i0:i1,:].mean(axis=0)
stats['std'] = sig[i0:i1,:].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1,:]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1,:]*sig[i0:i1,:], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1,:], x=sig[i0:i1,0], axis=0)
return stats
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
signal is 1D
"""
try:
sig_rf = fatigue.rainflow_astm(signal)
except:
return []
if len(sig_rf) < 1 and not sig_rf:
return []
hist_data, x, bin_avg = fatigue.rfc_hist(sig_rf, no_bins)
m = np.atleast_1d(m)
eq = []
for i in range(len(m)):
eq.append(np.power(np.sum(0.5 * hist_data *\
np.power(bin_avg, m[i])) / neq, 1. / m[i]))
return eq
# TODO: general signal method, this is not HAWC2 specific, move out
def cycle_matrix(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12]):
# import fatigue_tools.fatigue as ft
# cycles, ampl_bin_mean, ampl_bin_edges, mean_bin_mean, mean_edges \
# = ft.cycle_matrix(signal, ampl_bins=no_bins, mean_bins=1,
# rainflow_func=ft.rainflow_windap)
# # in this case eq = sum( n_i*S_i^m )
# return [np.sum(cycles * ampl_bin_mean ** _m) for _m in m]
try:
sig_rf = fatigue.rainflow_astm(signal)
except:
return []
if len(sig_rf) < 1 and not sig_rf:
return []
hist_data, x, bin_avg = fatigue.rfc_hist(sig_rf, no_bins)
m = np.atleast_1d(m)
return [np.sum(0.5 * hist_data * bin_avg ** _m) for _m in m]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype' : 'state pos', 'component' : 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:,db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
db.search({'sensortype' : 'state pos', 'component' : 'y'})
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:,db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:,list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command.
"""
# because the formatting is really weird, we need to sanatize it a bit
with open(fname, 'r') as f:
# read the header from line 3
f.readline()
f.readline()
header = f.readline().replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
data = np.loadtxt(fname, skiprows=3)
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
#Body data for body number : 3 with the name :nacelle
#Results: fd [Hz] fn [Hz] log.decr [%]
#Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = open(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz':[], 'Fn_hz':[], 'log_decr_pct':[], 'body':[]}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
body = body.replace('\n','').replace('\r','')
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n','').replace('\r','').split(':')
#modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
#eigenmodes = eigmod
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
eigmod[k] = float(eigmod[k])#.lstrip().rstrip()
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters
----------
file_path : str
file_name : str
debug : boolean, default=False
max_modes : int
Stop evaluating the result after max_modes number of modes have been
identified
Returns
-------
modes_arr : ndarray(3,n)
An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
decrement [%] for n different structural eigenmodes
"""
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
# Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
FILE = open(os.path.join(file_path, file_name))
lines = FILE.readlines()
FILE.close()
header_lines = 8
# we now the number of modes by having the number of lines
nrofmodes = len(lines) - header_lines
modes_arr = np.ndarray((3,nrofmodes))
for i, line in enumerate(lines):
if i > max_modes:
# cut off the unused rest
modes_arr = modes_arr[:,:i]
break
# ignore the header
if i < header_lines:
continue
# split up mode nr from the rest
parts = line.split(':')
#modenr = int(parts[1])
# get fd, fn and damping, but remove all empty items on the list
modes_arr[:,i-header_lines]=misc.remove_items(parts[2].split(' '),'')
return modes_arr
class UserWind:
"""
"""
def __init__(self):
pass
def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
nr_vert=20, h_ME=500.0, fname=None, wdir=None):
"""
Parameters
----------
z_h : float
Hub height
r_blade_tip : float
Blade tip radius
a_phi : float, default=None
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
shear_exp : float, default=None
nr_vert : int, default=3
nr_hor : int, default=20
h_ME : float, default=500
Modified Ekman parameter. Take roughly 500 for off shore sites,
1000 for on shore sites.
fname : str, default=None
When specified, the HAWC2 user defined veer input file will be
written.
wdir : float, default=None
A constant veer angle, or yaw angle. Equivalent to setting the
wind direction. Angle in degrees.
Returns
-------
None
"""
x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
nr_hor=nr_hor)
if a_phi is not None:
phi_rad = self.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
assert len(phi_rad) == nr_vert
else:
nr_vert = len(z)
phi_rad = np.zeros((nr_vert,))
# add any yaw error on top of
if wdir is not None:
# because wdir cw positive, and phi veer ccw positive
phi_rad -= (wdir*np.pi/180.0)
u, v, w, xx, zz = self.decompose_veer(phi_rad, x, z)
# scale the shear on top of that
if shear_exp is not None:
shear = self.shear_powerlaw(zz, z_h, shear_exp)
uu = u*shear[:,np.newaxis]
vv = v*shear[:,np.newaxis]
ww = w*shear[:,np.newaxis]
# and write to a file
if fname is not None:
self.write_user_defined_shear(fname, uu, vv, ww, xx, zz)
def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
"""
Utility to create the coordinates of the wind field based on hub heigth
and blade length.
"""
# take 15% extra space after the blade tip
z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
# along the horizontal, coordinates with 0 at the rotor center
x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)
return x, z
def shear_powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) )
return a_phi * t1 * t2 * t3
def decompose_veer(self, phi_rad, x, z):
"""
Convert a veer angle into u, v, and w components, ready for the
HAWC2 user defined veer input file.
Paramters
---------
phi_rad : ndarray
veer angle in radians
method : str, default=linear
'linear' for a linear veer, 'ekman_mod' for modified ekman method
Returns
-------
u, v, w, v_coord, w_coord
"""
nr_hor = len(x)
nr_vert = len(z)
assert len(phi_rad) == nr_vert
tan_phi = np.tan(phi_rad)
# convert veer angles to veer components in v, u. Make sure the
# normalized wind speed remains 1!
# u = sympy.Symbol('u')
# v = sympy.Symbol('v')
# tan_phi = sympy.Symbol('tan_phi')
# eq1 = u**2.0 + v**2.0 - 1.0
# eq2 = (tan_phi*u/v) - 1.0
# sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
# # proposed solution is:
# u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
# v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
# # but that gives the sign switch wrong, simplify/rewrite to:
u = np.sqrt(1.0/(tan_phi**2 + 1.0))
v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
# verify they are actually the same but the sign:
# assert np.allclose(np.abs(u), np.abs(u2))
# assert np.allclose(np.abs(v), np.abs(v2))
u_full = u[:,np.newaxis] + np.zeros((3,))[np.newaxis,:]
v_full = v[:,np.newaxis] + np.zeros((3,))[np.newaxis,:]
w_full = np.zeros((nr_vert,nr_hor))
return u_full, v_full, w_full, x, z
def load_user_defined_veer(self, fname):
"""
Load a user defined veer and shear file as used for HAWC2
Returns
-------
u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
"""
blok = 0
bloks = {}
with open(fname) as f:
for i, line in enumerate(f.readlines()):
if line.strip()[0] == '#' and blok > 0:
bloks[blok] = i
blok += 1
elif line.strip()[0] == '#':
continue
elif blok == 0:
items = line.split(' ')
items = misc.remove_items(items, '')
nr_hor, nr_vert = int(items[0]), int(items[1])
blok += 1
# nr_lines = i
k = nr_hor + 4*nr_vert + 7
v_comp = np.genfromtxt(fname, skiprows=3, skip_footer=i-3-3-nr_vert)
u_comp = np.genfromtxt(fname, skiprows=3+1+nr_vert,
skip_footer=i-3-3-nr_vert*2)
w_comp = np.genfromtxt(fname, skiprows=3+2+nr_vert*2,
skip_footer=i-3-3-nr_vert*3)
v_coord = np.genfromtxt(fname, skiprows=3+3+nr_vert*3,
skip_footer=i-3-3-nr_vert*3-3)
w_coord = np.genfromtxt(fname, skiprows=3+3+nr_vert*3+4,
skip_footer=i-k)
phi_deg = np.arctan(v_comp[:,0]/u_comp[:,0])*180.0/np.pi
return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
def write_user_defined_shear(self, fname, u, v, w, v_coord, w_coord):
"""
"""
nr_hor = len(v_coord)
nr_vert = len(w_coord)
try:
assert u.shape == v.shape
assert u.shape == w.shape
assert u.shape[0] == nr_vert
assert u.shape[1] == nr_hor
except AssertionError:
raise ValueError('u, v, w shapes should be consistent with '
'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))
# and create the input file
with open(fname, 'w') as f:
f.write('# User defined shear file\n')
f.write('%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert))
h1 = 'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns'
f.write('# v component, %s\n' % h1)
np.savetxt(f, v, fmt='% 08.05f', delimiter=' ')
f.write('# u component, %s\n' % h1)
np.savetxt(f, u, fmt='% 08.05f', delimiter=' ')
f.write('# w component, %s\n' % h1)
np.savetxt(f, w, fmt='% 08.05f', delimiter=' ')
h2 = '# v coordinates (along the horizontal, nr_hor, 0 rotor center)'
f.write('%s\n' % h2)
np.savetxt(f, v_coord.reshape((v_coord.size,1)), fmt='% 8.02f')
h3 = '# w coordinates (zero is at ground level, height, nr_hor)'
f.write('%s\n' % h3)
np.savetxt(f, w_coord.reshape((w_coord.size,1)), fmt='% 8.02f')
class WindProfiles:
def __init__(self):
pass
def powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians as function of height
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) )
return a_phi * t1 * t2 * t3
class Turbulence:
def __init__(self):
pass
def read_hawc2(self, fpath, shape):
"""
Read the HAWC2 turbulence format
"""
fid = open(fpath, 'rb')
tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2])
turb = np.reshape(tmp, shape)
return turb
def read_bladed(self, fpath, basename):
fid = open(fpath + basename + '.wnd', 'rb')
R1 = struct.unpack('h', fid.read(2))[0]
R2 = struct.unpack('h', fid.read(2))[0]
turb = struct.unpack('i', fid.read(4))[0]
lat = struct.unpack('f', fid.read(4))[0]
rough = struct.unpack('f', fid.read(4))[0]
refh = struct.unpack('f', fid.read(4))[0]
longti = struct.unpack('f', fid.read(4))[0]
latti = struct.unpack('f', fid.read(4))[0]
vertti = struct.unpack('f', fid.read(4))[0]
dv = struct.unpack('f', fid.read(4))[0]
dw = struct.unpack('f', fid.read(4))[0]
du = struct.unpack('f', fid.read(4))[0]
halfalong = struct.unpack('i', fid.read(4))[0]
mean_ws = struct.unpack('f', fid.read(4))[0]
VertLongComp = struct.unpack('f', fid.read(4))[0]
LatLongComp = struct.unpack('f', fid.read(4))[0]
LongLongComp = struct.unpack('f', fid.read(4))[0]
Int = struct.unpack('i', fid.read(4))[0]
seed = struct.unpack('i', fid.read(4))[0]
VertGpNum = struct.unpack('i', fid.read(4))[0]
LatGpNum = struct.unpack('i', fid.read(4))[0]
VertLatComp = struct.unpack('f', fid.read(4))[0]
LatLatComp = struct.unpack('f', fid.read(4))[0]
LongLatComp = struct.unpack('f', fid.read(4))[0]
VertVertComp = struct.unpack('f', fid.read(4))[0]
LatVertComp = struct.unpack('f', fid.read(4))[0]
LongVertComp = struct.unpack('f', fid.read(4))[0]
points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3)
fid.close()
return points
def convert2bladed(self, fpath, basename, shape=(4096,32,32)):
"""
Convert turbulence box to BLADED format
"""
u = self.read_hawc2(fpath + basename + 'u.bin', shape)
v = self.read_hawc2(fpath + basename + 'v.bin', shape)
w = self.read_hawc2(fpath + basename + 'w.bin', shape)
# mean velocity components at the center of the box
v1, v2 = (shape[1]/2)-1, shape[1]/2
w1, w2 = (shape[2]/2)-1, shape[2]/2
ucent = (u[:,v1,w1] + u[:,v1,w2] + u[:,v2,w1] + u[:,v2,w2]) / 4.0
vcent = (v[:,v1,w1] + v[:,v1,w2] + v[:,v2,w1] + v[:,v2,w2]) / 4.0
wcent = (w[:,v1,w1] + w[:,v1,w2] + w[:,v2,w1] + w[:,v2,w2]) / 4.0
# FIXME: where is this range 351:7374 coming from?? The original script
# considered a box of lenght 8192
umean = np.mean(ucent[351:7374])
vmean = np.mean(vcent[351:7374])
wmean = np.mean(wcent[351:7374])
ustd = np.std(ucent[351:7374])
vstd = np.std(vcent[351:7374])
wstd = np.std(wcent[351:7374])
# gives a slight different outcome, but that is that significant?
# umean = np.mean(u[351:7374,15:17,15:17])
# vmean = np.mean(v[351:7374,15:17,15:17])
# wmean = np.mean(w[351:7374,15:17,15:17])
# this is wrong since we want the std on the center point
# ustd = np.std(u[351:7374,15:17,15:17])
# vstd = np.std(v[351:7374,15:17,15:17])
# wstd = np.std(w[351:7374,15:17,15:17])
iu = np.zeros(shape)
iv = np.zeros(shape)
iw = np.zeros(shape)
iu[:,:,:] = (u - umean)/ustd*1000.0
iv[:,:,:] = (v - vmean)/vstd*1000.0
iw[:,:,:] = (w - wmean)/wstd*1000.0
# because MATLAB and Octave do a round when casting from float to int,
# and Python does a floor, we have to round first
np.around(iu, decimals=0, out=iu)
np.around(iv, decimals=0, out=iv)
np.around(iw, decimals=0, out=iw)
return iu.astype(np.int16), iv.astype(np.int16), iw.astype(np.int16)
def write_bladed(self, fpath, basename, shape):
"""
Write turbulence BLADED file
"""
# TODO: get these parameters from a HAWC2 input file
seed = 6
mean_ws = 11.4
turb = 3
R1 = -99
R2 = 4
du = 0.974121094
dv = 4.6875
dw = 4.6875
longti = 14
latti = 9.8
vertti = 7
iu, iv, iw = self.convert2bladed(fpath, basename, shape=shape)
fid = open(fpath + basename + '.wnd', 'wb')
fid.write(struct.pack('h', R1)) # R1
fid.write(struct.pack('h', R2)) # R2
fid.write(struct.pack('i', turb)) # Turb
fid.write(struct.pack('f', 999)) # Lat
fid.write(struct.pack('f', 999)) # rough
fid.write(struct.pack('f', 999)) # refh
fid.write(struct.pack('f', longti)) # LongTi
fid.write(struct.pack('f', latti)) # LatTi
fid.write(struct.pack('f', vertti)) # VertTi
fid.write(struct.pack('f', dv)) # VertGpSpace
fid.write(struct.pack('f', dw)) # LatGpSpace
fid.write(struct.pack('f', du)) # LongGpSpace
fid.write(struct.pack('i', shape[0]/2)) # HalfAlong
fid.write(struct.pack('f', mean_ws)) # meanWS
fid.write(struct.pack('f', 999.)) # VertLongComp
fid.write(struct.pack('f', 999.)) # LatLongComp
fid.write(struct.pack('f', 999.)) # LongLongComp
fid.write(struct.pack('i', 999)) # Int
fid.write(struct.pack('i', seed)) # Seed
fid.write(struct.pack('i', shape[1])) # VertGpNum
fid.write(struct.pack('i', shape[2])) # LatGpNum
fid.write(struct.pack('f', 999)) # VertLatComp
fid.write(struct.pack('f', 999)) # LatLatComp
fid.write(struct.pack('f', 999)) # LongLatComp
fid.write(struct.pack('f', 999)) # VertVertComp
fid.write(struct.pack('f', 999)) # LatVertComp
fid.write(struct.pack('f', 999)) # LongVertComp
# fid.flush()
# bladed2 = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16)
# for i in xrange(shape[0]):
# for k in xrange(shape[1]):
# for j in xrange(shape[2]):
# fid.write(struct.pack('i', iu[i, shape[1]-j-1, k]))
# fid.write(struct.pack('i', iv[i, shape[1]-j-1, k]))
# fid.write(struct.pack('i', iw[i, shape[1]-j-1, k]))
# bladed2[i,k,j,0] = iu[i, shape[1]-j-1, k]
# bladed2[i,k,j,1] = iv[i, shape[1]-j-1, k]
# bladed2[i,k,j,2] = iw[i, shape[1]-j-1, k]
# re-arrange array for bladed format
bladed = np.ndarray((shape[0], shape[2], shape[1], 3), dtype=np.int16)
bladed[:,:,:,0] = iu[:,::-1,:]
bladed[:,:,:,1] = iv[:,::-1,:]
bladed[:,:,:,2] = iw[:,::-1,:]
bladed_swap_view = bladed.swapaxes(1,2)
bladed_swap_view.tofile(fid, format='%int16')
fid.flush()
fid.close()
class Bladed(object):
def __init__(self):
"""
Some BLADED results I have seen are just weird text files. Convert
them to a more convienent format.
path/to/file
channel 1 description
col a name/unit col b name/unit
a0 b0
a1 b1
...
path/to/file
channel 2 description
col a name/unit col b name/unit
...
"""
pass
def infer_format(self, lines):
"""
Figure out how many channels and time steps are included
"""
count = 1
for line in lines[1:]:
if line == lines[0]:
break
count += 1
iters = count - 3
chans = len(lines) / (iters + 3)
return int(chans), int(iters)
def read(self, fname, chans=None, iters=None, enc='cp1252'):
"""
Parameters
----------
fname : str
chans : int, default=None
iters : int, default=None
enc : str, default='cp1252'
character encoding of the source file. Usually BLADED is used on
windows so Western-European windows encoding is a safe bet.
"""
with codecs.open(fname, 'r', enc) as f:
lines = f.readlines()
nrl = len(lines)
if chans is None and iters is None:
chans, iters = self.infer_format(lines)
if iters is not None:
chans = int(nrl / (iters + 3))
if chans is not None:
iters = int((nrl / chans) - 3)
# file_head = [ [k[:-2],0] for k in lines[0:nrl:iters+3] ]
# chan_head = [ [k[:-2],0] for k in lines[1:nrl:iters+3] ]
# cols_head = [ k.split('\t')[:2] for k in lines[2:nrl:iters+3] ]
data = {}
for k in range(chans):
# take the column header from the 3 comment line, but
head = lines[2 + (3 + iters)*k][:-2].split('\t')[1].encode('utf-8')
i0 = 3 + (3 + iters)*k
i1 = i0 + iters
data[head] = np.array([k[:-2].split('\t')[1] for k in lines[i0:i1:1]])
data[head] = data[head].astype(np.float64)
time = np.array([k[:-2].split('\t')[0] for k in lines[i0:i1:1]])
df = pd.DataFrame(data, index=time.astype(np.float64))
df.index.name = lines[0][:-2]
return df
class Tests(unittest.TestCase):
def setUp(self):
pass
def print_test_info(self):
pass
def test_reshaped(self):
"""
Make sure we correctly reshape the array instead of the manual
index reassignments
"""
fpath = 'data/turb_s100_3.00w.bin'
fid = open(fpath, 'rb')
turb = np.fromfile(fid, 'float32', 32*32*8192)
turb.shape
fid.close()
u = np.zeros((8192,32,32))
for i in range(8192):
for j in range(32):
for k in range(32):
u[i,j,k] = turb[ i*1024 + j*32 + k]
u2 = np.reshape(turb, (8192, 32, 32))
self.assertTrue(np.alltrue(np.equal(u, u2)))
def test_headers(self):
fpath = 'data/'
basename = 'turb_s100_3.00_refoctave_header'
fid = open(fpath + basename + '.wnd', 'rb')
R1 = struct.unpack("h",fid.read(2))[0]
R2 = struct.unpack("h",fid.read(2))[0]
turb = struct.unpack("i",fid.read(4))[0]
lat = struct.unpack("f",fid.read(4))[0]
# last line
fid.seek(100)
LongVertComp = struct.unpack("f",fid.read(4))[0]
fid.close()
basename = 'turb_s100_3.00_python_header'
fid = open(fpath + basename + '.wnd', 'rb')
R1_p = struct.unpack("h",fid.read(2))[0]
R2_p = struct.unpack("h",fid.read(2))[0]
turb_p = struct.unpack("i",fid.read(4))[0]
lat_p = struct.unpack("f",fid.read(4))[0]
# last line
fid.seek(100)
LongVertComp_p = struct.unpack("f",fid.read(4))[0]
fid.close()
self.assertEqual(R1, R1_p)
self.assertEqual(R2, R2_p)
self.assertEqual(turb, turb_p)
self.assertEqual(lat, lat_p)
self.assertEqual(LongVertComp, LongVertComp_p)
def test_write_bladed(self):
fpath = 'data/'
turb = Turbulence()
# write with Python
basename = 'turb_s100_3.00'
turb.write_bladed(fpath, basename, shape=(8192,32,32))
python = turb.read_bladed(fpath, basename)
# load octave
basename = 'turb_s100_3.00_refoctave'
octave = turb.read_bladed(fpath, basename)
# float versions of octave
basename = 'turb_s100_3.00_refoctave_float'
fid = open(fpath + basename + '.wnd', 'rb')
octave32 = np.fromfile(fid, 'float32', 8192*32*32*3)
# find the differences
nr_diff = (python-octave).__ne__(0).sum()
print(nr_diff)
print(nr_diff/len(python))
self.assertTrue(np.alltrue(python == octave))
def test_turbdata(self):
shape = (8192,32,32)
fpath = 'data/'
basename = 'turb_s100_3.00_refoctave'
fid = open(fpath + basename + '.wnd', 'rb')
# check the last element of the header
fid.seek(100)
print(struct.unpack("f",fid.read(4))[0])
# save in a list using struct
items = (os.path.getsize(fpath + basename + '.wnd')-104)/2
data_list = [struct.unpack("h",fid.read(2))[0] for k in range(items)]
fid.seek(104)
data_16 = np.fromfile(fid, 'int16', shape[0]*shape[1]*shape[2]*3)
fid.seek(104)
data_8 = np.fromfile(fid, 'int8', shape[0]*shape[1]*shape[2]*3)
self.assertTrue(np.alltrue( data_16 == data_list ))
self.assertFalse(np.alltrue( data_8 == data_list ))
def test_compare_octave(self):
"""
Compare the results from the original script run via octave
"""
turb = Turbulence()
iu, iv, iw = turb.convert2bladed('data/', 'turb_s100_3.00',
shape=(8192,32,32))
res = sio.loadmat('data/workspace.mat')
# increase tolerances, values have a range up to 5000-10000
# and these values will be written to an int16 format for BLADED!
self.assertTrue(np.allclose(res['iu'], iu, rtol=1e-03, atol=1e-2))
self.assertTrue(np.allclose(res['iv'], iv, rtol=1e-03, atol=1e-2))
self.assertTrue(np.allclose(res['iw'], iw, rtol=1e-03, atol=1e-2))
def test_allindices(self):
"""
Verify that all indices are called
"""
fpath = 'data/turb_s100_3.00w.bin'
fid = open(fpath, 'rb')
turb = np.fromfile(fid, 'float32', 32*32*8192)
turb.shape
fid.close()
check = []
for i in range(8192):
for j in range(32):
for k in range(32):
check.append(i*1024 + j*32 + k)
qq = np.array(check)
qdiff = np.diff(qq)
self.assertTrue(np.alltrue(np.equal(qdiff, np.ones(qdiff.shape))))
if __name__ == '__main__':
unittest.main()